Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ghi nhớ: Nếu hàm số
liên tục trên đoạn và thì phương trình
có ít nhất một nghiệm nằm trong khoảng .
Ta có x3 - 3x2 + 1 - m = 0 (1) là phương trình hoành độ giao điểm giữa hai đồ thị hàm số y = x3-3x2+1 và y = m (là đường thẳng song song hoặc trùng với Ox).
Xét y = x3-3x2+1 .
Tính y’ = 3x2- 6x
Ta có
y ' = 0 ⇔ 3 x 2 - 6 x = 0 ⇔
Ta có x = 1 thì y = -1
Số nghiệm của phương trình chính là số giao điểm của đồ thị y = x3-3x2+1 và đường thẳng y = m .
Do đó, yêu cầu bài toán khi và chỉ khi -3 < m < -1
Chọn C.
Ta có x3- 3x2+ 1- m=0 là phương trình hoành độ giao điểm giữa hai đồ thị hàm số
y= x3- 3x2+ 1 và y= m (là đường thẳng song song hoặc trùng với Ox).
+Xét y= x3- 3x2+ 1 .
Đạo hàm y’ = 3x2- 6x
Ta có y’=0 ⇔ 3x2- 6x=0
Khi x= 1 thì y= -1
Dựa vào đồ thị, yêu cầu bài toán khi và chỉ khi -3< m< -1 .
Chọn C.
x 3 – 3 x 2 – m = 0 ⇔ x 3 – 3 x 2 = m x 3 – 3 x 2 – m = 0 ⇔ x 3 – 3 x 2 = m (∗)
Phương trình (∗) có 3 nghiệm phân biệt khi và chỉ khi đường thẳng y = m cắt (C) tại 3 điểm phân biệt. Từ đó suy ra: – 4 < m < 0.
Đặt f(x) = x 3 – 3 x 2 (C1)
y = m ( C 2 )
Phương trình x 3 – 3 x 2 – m = 0 có ba nghiệm phân biệt khi và chỉ khi ( C 1 ) và ( C 2 ) có ba giao điểm.
Ta có:
f′(x) = 3 x 2 − 6x = 3x(x − 2) = 0
Bảng biến thiên:
Suy ra ( C 1 ) và ( C 2 ) cắt nhau tại 3 điểm khi -4 < m < 0
Kết luận : Phương trình x 3 – 3 x 2 – m = 0 có ba nghiệm phân biệt với những giá trị của m thỏa mãn điều kiện: -4 < m < 0.