K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2015

\(x_0\)  là số hữu tỉ nên ta có thể viết dưới dạng \(x_0=\frac{p}{q},\) với \(p,q\)  nguyên tố cùng nhau, \(q>0\). Thay vào phương trình, rồi nhân cả hai vế với \(q^3\), ta được \(p^3+2015p^2q+2016pq^2+mq^3=0\to mq^3\vdots p,p^3\vdots q\to m\vdots p,q=1\to x_0=p\)  là số nguyên.

14 tháng 7 2017

2 x + m y = 1 m x + 2 y = 1 ⇔ y = 1 − m x 2 2 x + m 1 − m x 2 = 1 ⇔ y = 1 − m x 2 4 − m 2 x = 2 − m ⇔ y = 1 − m x 2 2 − m 2 + m x = 2 − m

Nếu m = 2 ⇒ 0x = 0 hệ phương trình có vô số nghiệm

Nếu m = − 2 ⇒ 0x = 4 hệ phương trình vô nghiệm

Nếu m ≠ ± 2 ⇒ ( 2   +   m ) x   =   1   x = 1 2 + m ⇒ y = 1 2 + m ⇒ M 1 2 + m ; 1 2 + m    

Nhận thấy: M có tọa độ thỏa mãn tung độ = hoành độ

 M nằm trên đường thẳng (d): x = y

Đáp án:C

=>2x+6y=2m+2 và 2x-y=7

=>7y=2m-5 và 2x-y=7

=>y=2/7m-5/7 và 2x=y+7

=>y=2/7m-5/7 và 2x=2/7m+30/7

=>x=1/7m+15/7 và y=2/7m-5/7

x0+2y0 bằng gì bạn ơi?

25 tháng 1 2017

k minh minh giai cho

25 tháng 1 2017

giúp em với bài tập Tết ạ ! k làm cô giết em

24 tháng 7 2017

Ta có 

x − y = 5 3 x + 2 y = 18 ⇔ x = y + 5 3. y + 5 + 2 y = 18 ⇔ x = y + 5 3 y + 15 + 2 y = 18 ⇔ x = y + 5 5 y = 3

⇔ y = 3 5 x = 5 + 3 5 ⇔ x = 28 5 y = 3 5

Vậy hệ phương trình có nghiệm duy nhất  x ;   y = 28 5 ; 3 5 ⇒ x . y   = 84 25

Đáp án: B

ĐKXĐ: \(m\ne-\dfrac{1}{3}\)

a) Để (P) đi qua điểm \(E\left(\dfrac{1}{2};\dfrac{1}{4}\right)\) thì

Thay \(x=\dfrac{1}{2}\)và \(y=\dfrac{1}{4}\) vào hàm số \(y=\left(3m+1\right)x^2\), ta được:

\(\left(3m+1\right)\cdot\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow3m+1=1\)

\(\Leftrightarrow3m=0\)

hay m=0(thỏa ĐK)

b) Ta có: \(\left\{{}\begin{matrix}3x-4y=2\\-4x+3y=-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x-16y=8\\-12x+9y=-15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7y=-7\\3x-4y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\3x=2+4y=2+4=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy: F(2;1)

Để (P) đi qua điểm F(2;1) thì 

Thay x=2 và y=1 vào hàm số \(y=\left(3m+1\right)x^2\), ta được:

\(\left(3m+1\right)\cdot4=1\)

\(\Leftrightarrow3m+1=\dfrac{1}{4}\)

\(\Leftrightarrow3m=-\dfrac{3}{4}\)

\(\Leftrightarrow m=\dfrac{-3}{4}:3=\dfrac{-3}{4}\cdot\dfrac{1}{3}=\dfrac{-1}{4}\)(thỏa ĐK)

1. cho pt x2-2(m-2)x-2m=0 với x là ẩn số giá trị của m để pt có 2 nghiệm là 2 số đối nhau là a,0         b, \(\dfrac{-1}{2}\)        c, 2        d, 4 2. biết rằng (x0; y0)là nghiệm của hệ pt \(\left\{{}\begin{matrix}x+2y-3=0\\2x-y-1=0\end{matrix}\right.\) tổng x0 + y0 bằng a,3        b,1               c,0        d, 23. trong △ABC vuông tại A có AC=3; AB=4 khi đó tanB bằng a,\(\dfrac{4}{5}\)      b,\(\dfrac{3}{5}\)             c,\(\dfrac{3}{4}\)       ...
Đọc tiếp

1. cho pt x2-2(m-2)x-2m=0 với x là ẩn số giá trị của m để pt có 2 nghiệm là 2 số đối nhau là 
a,0         b, \(\dfrac{-1}{2}\)        c, 2        d, 4 
2. biết rằng (x0; y0)là nghiệm của hệ pt \(\left\{{}\begin{matrix}x+2y-3=0\\2x-y-1=0\end{matrix}\right.\) tổng x+ ybằng 
a,3        b,1               c,0        d, 2
3. trong △ABC vuông tại A có AC=3; AB=4 khi đó tanB bằng 
a,\(\dfrac{4}{5}\)      b,\(\dfrac{3}{5}\)             c,\(\dfrac{3}{4}\)         d \(\dfrac{4}{3}\)
4. trên đg tròn (O;R) lấy 2 điểm A,B sao cho số đo cung AB lớn hơn bằng \(270^o\) độ dài dây cung là 
a, R\(\sqrt{2}\)   b, R\(\sqrt{3}\)     c, R         d, 2R\(\sqrt{2}\)
5. cho đg tròn (O;3cm) 2 điểm A,B thuộc đường tròn và sđ \(\stackrel\frown{AB}\) = \(60^o\) độ dài cung nhỏ AB là 
a, \(\dfrac{\pi}{2}\) cm  b, \(3\pi\)       c, \(\dfrac{\pi}{3}cm\)    d, \(\pi\)cm
6. giá trị của m để 2 đg thẳng (d): y=xm+6 và (d'): y=3x+2-m song song là 
a, m=-2   b, m=-3      c, m=-4    d, m=1
7. cho hàm số bậc nhất y=ax+b có hệ số góc bằng -1 và tung độ góc bằng 3 giá trị của biểu thức a2+b bằng
a,2        b, 4      c, 9      d, 5
8. cho hệ pt \(\left\{{}\begin{matrix}3x+my=1\\nx+y=3\end{matrix}\right.\) với m,n là tham số biết rằng (x;y)=(1,1) là 1 nghiệm của hệ đã cho giá trị của m+n bằng 
a, -1     b, 3     c, 1     d, 2
9.cho Parabol (P) có pt \(y=\dfrac{x^2}{4}\) vào đường thẳng (d): y=-2x-4
a, (P) cắt (d) tại 2 điểm phân biệt 
b, (P) cắt (d) tại điểm duy nhất (-2;2)
c, (P) ko cắt (d)
d, (P) tiếp xúc với (d), tiếp điểm là (-4;4)
10. tất cả các giá trị của x để \(\sqrt{-2x+6}\) có nghĩa là 
a, x≥3    b, x>3    c, x≤3      d, x<-3

1

Câu 3: C

Câu 4: A
Câu 5: C

Câu 6: m=3

Câu 7: B

Câu 8: D

Câu 9: D

Câu 10: C

28 tháng 2 2020

HPT : \(\hept{\begin{cases}2x+y=2\\x+2y=4m+5\end{cases}}\)

a) Ta có : x + 2y = 4m + 5

Thay m = -1, ta được:

         x + 2y = 4.(-1) + 5

\(\Leftrightarrow\)x + 2y = 1   (1)

Lại có : 2x + y = 2  (2)

Cộng (1) với (2), ta được :

        3x + 3y = 1 + 2

\(\Leftrightarrow\)3(x + y) = 3

\(\Leftrightarrow\)x + y = 1   (3)

Lấy (2) trừ (3), ta được :

2x + y - x - y = 2 - 1

\(\Leftrightarrow\)x = 1

\(\Leftrightarrow\)y = 0

Vậy với \(m=-1\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)

b) Thay xo = yo - 2 vào HPT, ta được :

\(\Leftrightarrow\hept{\begin{cases}2\left(y_o-2\right)+y_o=2\\y_o-2+2y_o=4m+5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y_o-6=0\\3y_o-6=4m+1\end{cases}}\)

\(\Leftrightarrow4m+1=0\)

\(\Leftrightarrow m=-\frac{1}{4}\)

Vậy để \(x_o=y_o-2\Leftrightarrow m=-\frac{1}{4}\)