Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=a^2-4\left(b+2\right)>0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-a\\x_1x_2=b+2\end{matrix}\right.\) (1)
\(\left\{{}\begin{matrix}x_1-x_2=4\\\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\64+12x_1x_2=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\x_1x_2=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=3\\x_2=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_1=1\\x_2=-3\end{matrix}\right.\)
Thế vào (1) để tìm a; b
\(x^2+ax+b+1=0\)
\(\Delta=a^2-4b-4\)
Để pt có 2 nghiệm pb \(\Leftrightarrow\Delta>0\Leftrightarrow a^2-4b-4>0\)
Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=-a\\x_1.x_2=b+1\end{cases}}\)
Ta có: \(\hept{\begin{cases}x_1-x_2=3\\x_1^3-x_2^3=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\x_1^2+x_1x_2+x_2^2=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\\left(x_1-x_2\right)^2+3x_1x_2=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\x_1x_2=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1=3+x_2\\\left(3+x_2\right)x_2=-2\left(1\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow x_2^2+3x_2+2=0\)
\(\Delta=1\)
\(\Rightarrow\)pt có 2 nghiệm pb \(\orbr{\begin{cases}x_2=\frac{-3+1}{2}=-1\Rightarrow x_1=2\\x_2=\frac{-3-1}{2}=-2\Rightarrow x_1=1\end{cases}}\)
TH1: \(x_1=2;x_2=-1\)
\(\Rightarrow\hept{\begin{cases}a=-1\\b=-3\end{cases}}\)( LOẠI vì a^2 -4b-4 <0 )
TH2: \(x_1=1;x_2=-2\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}\)( tm )
VẬY ...
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
a) \(x_1^2+x_2^2=23\)
\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=23\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=23\)
\(\Leftrightarrow5^2-2\left(m+4\right)=23\)
<=> m=-3
b) \(x_1^3+x_2^3=35\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=35\)
\(\Leftrightarrow\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=35\)
\(\Leftrightarrow5\left[5^2-3\left(m+4\right)\right]=35\)
<=> m=2
c) \(\left|x_2-x_1\right|=3\)
\(\Leftrightarrow\left(\left|x_2-x_1\right|\right)^2=3^2\)
\(\Leftrightarrow x_1^2-2x_1x_2+x_1^2=3^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)
<=> m=0
ĐK để pt có hai nghiệm phân biệt là: \(\Delta>0\Leftrightarrow25-4\left(m+4\right)>0\Leftrightarrow m< \frac{9}{4}\) ( @@)
Gọi \(x_1;x_2\) là hai nghiệm của phương trình
Theo định lí Viet ta có: \(x_1+x_2=5;x_1.x_2=m+4\)
a) \(x_1^2+x_2^2=23\)
<=> \(x_1^2+x_2^2+2x_1x_2=23+2x_1x_2\)
<=> \(\left(x_1+x_2\right)^2=23+2x_1x_2\)
=> \(25=23+2\left(m+4\right)\)
<=>m = -3 ( thỏa mãn @@)
b) \(x_1^3+x_2^3=35\)
<=> \(\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=35\)
=> \(5^3-3.5.\left(m+4\right)=35\)
<=> m = 2 ( thỏa mãn @@)
c) \(\left|x_2-x_1\right|=3\)
<=> \(\left(x_1-x_2\right)^2=9\)
<=> \(\left(x_1+x_2\right)^2-4x_1x_2=9\)
=> \(5^2-4\left(m+4\right)=9\)
<=> m = 0 ( thỏa mãn @@)
Giả sử pt: \(x^2+bx+c=0\) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn đề bài.
Theo hệ thức Vi - ét ta có: \(x_1+x_2=-b\) và \(x_1x_2=c\)
Kết hợp với giải thiết ta có: \(x_1=x^2_2+x_2\) và \(b+c=4\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)=4\)
\(\Leftrightarrow x^3_2-2x_2-4=0\)
\(\Leftrightarrow\left(x_2-2\right)\left(x^2_2+2x_2+2\right)=0\)
\(\Leftrightarrow x_2=2\)(Vì: \(x^2_2+2x_2+2=\left(x_2+1\right)^2+1>0\))
Khi đó ta có: \(x_1=4+2=6\Rightarrow b=-8\)và \(c=12\)
Thử lại với \(b=-8;c=12\)ta được pt sau:
\(x^2-8x+12=0\)
\(\Leftrightarrow x_1=6;x_2=2\)(Thỏa mãn yêu cầu bài toán)
Vậy \(\left(b,c\right)=\left(-8;12\right)\) là cặp cần tìm.
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
Lời giải:
Trước tiên để pt có 2 nghiệm phân biệt thì $\Delta>0$
$\Leftrightarrow a^2-4(b+1)>0(*)$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-a\\ x_1x_2=b+1\end{matrix}\right.\)
Khi đó:
\(\left\{\begin{matrix} x_1-x_2=3\\ x_1^3-x_2^3=9\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1-x_2=3\\ x_1^2+x_1x_2+x_2^2=3\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} (x_1-x_2)^2=9\\ x_1^2+x_1x_2+x_2^2=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} (x_1+x_2)^2-4x_1x_2=9\\ (x_1+x_2)^2-x_1x_2=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a^2-4(b+1)=9\\ a^2-(b+1)=3\end{matrix}\right.\)
\(\Rightarrow -3(b+1)=9-3=6\Rightarrow b=-3\)
Thay vào: $a^2=3+b+1=1\Rightarrow a=\pm 1$ (thỏa mãn $(*)$)
Vậy $(a,b)=(\pm 1;-3)$