Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để pt có 2 nghiệm phân biệt thì:
$\Delta'=m^2-(2m-4)=m^2-2m+4>0$
$\Leftrightarrow (m-1)^2+3>0$
$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=2m$
$x_1x_2=2m-4$
Khi đó:
$x_1+2x_2=8$
$\Leftrightarrow 2m+x_2=8$
$\Leftrightarrow x_2=8-2m$
$\Leftrightarrow x_1=2m-x_2=2m-(8-2m)=4m-8$
$2m-4=x_1x_2=(4m-8)(8-2m)$
$\Leftrightarrow m-2=(2m-4)(8-2m)=2(m-2)(8-2m)$
$\Leftrightarrow (m-2)[2(8-2m)-1]=0$
$\Leftrightarrow (m-2)(15-4m)=0$
$\Leftrightarrow m=2$ hoặc $m=\frac{15}{4}$
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)
\(\Delta'=1-\left(m-3\right)>0\Rightarrow m< 4\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên:
\(x_1^2-2x_1+m-3=0\Rightarrow x_1^2=2x_1-m+3\)
Thế vào bài toán:
\(2x_1-m+3-2x_2+x_1x_2=-12\)
\(\Leftrightarrow2\left(x_1-x_2\right)=-12\Rightarrow x_1=x_2-6\)
Thế vào \(x_1+x_2=2\Rightarrow x_2-6+x_2=2\Rightarrow x_2=4\Rightarrow x_1=-2\)
Mặt khác: \(x_1x_2=m-3\Leftrightarrow-8=m-3\Rightarrow m=-5\)
Δ=(m+2)^2-4*2m=(m-2)^2
Để PT có hai nghiệm pb thì m-2<>0
=>m<>2
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1x_2}{4}\)
=>\(\dfrac{x_1+x_2}{x_1x_2}=\dfrac{x_1x_2}{4}\)
=>\(\dfrac{m+2}{2m}=\dfrac{2m}{4}=\dfrac{m}{2}\)
=>2m^2=2m+4
=>m^2-m-2=0
=>m=2(loại) hoặc m=-1
Lời giải:
1.
Khi $m=-1$ thì pt trở thành: $x^2+4x+2=0$
$\Leftrightarrow (x+2)^2=2$
$\Leftrightarrow x+2=\pm \sqrt{2}$
$\Leftrightarrow x=-2\pm \sqrt{2}$
2.
Ta thấy: $\Delta'=(m-1)^2+2m=m^2+1>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có 2 nghiệm pb với mọi $m$
Áp dụng định lý Viet:
$x_1+x_2=2(m-1)$
$x_1x_2=-2m$
Khi đó:
$x_1^2+x_1-x_2=5-2m=3-2(m-1)=3-x_1-x_2$
$\Leftrightarrow x_1^2+2x_1-3=0$
$\Leftrightarrow (x_1-1)(x_1+3)=0$
$\Leftrightarrow x_1=1$ hoặc $x_1=-3$
Nếu $x_1=1$
$\Leftrightarrow x_2+1=2m-2$ và $x_2=-2m$
$\Rightarrow 2x_2+1=-2$
$\Leftrightarrow x_2=\frac{-3}{2}$
$-2m=x_1x_2=\frac{-3}{2}$
$m=\frac{3}{4}$
-------------
Nếu $x_1=-3$
$\Leftrightarrow x_2-3=2m-2$ và $-3x_2=-2m$
$\Leftrightarrow m=\frac{-3}{4}$
△'=(-2)2-1(m-1)
=4-m+1
=5-m
Để PT có 2 no pb thì △'>0
⇒5-m>0
⇒m<5
theo vi-ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)
mà: \(x^2_1x_2+x_1x_2^2-2\left(x_1+x_2\right)=0\)
⇔\(\left(x_1x_2\right)\left(x_1+x_2\right)-2\left(x_1+x_2\right)=0\)
⇔\(\left(m-1\right)4-2\cdot4=0\)
⇔\(4m-4-8=0\)
⇔4m-12=0
⇔4m=12
⇔m=3
Vậy ...
b1: tìm đk m t/m: Δ>0 ↔ m∈(\(\dfrac{1-\sqrt{10}}{2}\) ; \(\dfrac{1+\sqrt{10}}{2}\))
b2: ➝x1+x2 =-2m-1 (1)
→ x1.x2=m^2-1 (2)
b3: biến đổi : (x1-x2)^2 = x1-5x2
↔ (x1+x2)^2 -4.x1.x2 -(x1+x2) +6.x2=0
↔4.m^2 +4m +1 - 4.m^2 +4 +2m+1+6. x2=0
↔x2= -m-1
B4: thay x2= -m-1 vào (1) → x1 = -m
Thay x2 = -m-1, x1 = -m vào (2)
→m= -1
B5: thử lại:
Với m= -1 có pt: x^2 -x =0
Có 2 nghiệm x1=1 và x2=0 (thoả mãn)
Để phương trình có 2 nghiệm
\(\Delta'\ge0\Rightarrow\left(-1\right)^2-1.3m\ge0\Leftrightarrow1-3m\ge0\Leftrightarrow1\ge3m\Leftrightarrow\dfrac{1}{3}\ge m\)
Theo hệ thức Vi-et ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1x_2=\dfrac{3m}{1}=3m\end{matrix}\right.\)
Ta có:
\(x_1^2x_2^2=x_1+x_2+7\\ \Leftrightarrow x_1x_2.x_1x_2=x_1+x_2+7\\ \Rightarrow3m.3m=2+7\\ \Leftrightarrow9m^2-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\left(tm\right)\\m=1\left(ktm\right)\end{matrix}\right.\)
Vậy m = -1
PT có 2 nghiệm khi:
\(\Delta=\left(m-1\right)^2-4\left(m-1\right)=\left(m-1\right)\left(m-5\right)\ge0\\ \Rightarrow\left[{}\begin{matrix}m< 1\\m>5\end{matrix}\right.\)
Theo Vi-ét: $\begin{cases} x_1+x_2=m-1\\ x_1x_2=m-1 \end{cases}$
Ta có $x_1+2x_2+x_1x_2=m$
\(\Leftrightarrow\left(x_1+ x_2\right)+x_1x_2+x_2=m\\ \Leftrightarrow m-1+x_2+m-1=m\\ \Leftrightarrow x_2=-m+2\)
Mà \(x_1+x_2=m-1\Leftrightarrow x_1=m-1+m-2=2m-3\)
Thay vào $x_1x_2=m-1$
\(\Leftrightarrow\left(2m-3\right)\left(-m+2\right)=m-1\\ \Leftrightarrow2m^2-6m+5=0\left(\text{vô nghiệm}\right)\)
Vậy không có giá trị của \(m\) thỏa mãn
\(\text{Δ}=5^2-4\cdot2\cdot\left(-2m+1\right)=8m+21\)
Để phương trình có hai nghiệm phân biệt thì 8m+21>0
hay m>-21/8
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1-2x_2=4\\x_1+x_2=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=-3\\x_1=-2\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=-2m+1\)
=>-2m+1=6
=>-2m=5
hay m=-5/2(loại)