Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vi-ét\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-2\end{cases}}\)
\(x_1^2+x_2^2-3x_1x_2=14\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=14\)
\(\Leftrightarrow m^2=14-10\)
\(\Leftrightarrow m=\pm2\)
Trả lời
a) Delta phương trình đó rồi xét 2 trường hợp
b) phần à delta lên sẽ tìm được m rồi thế vào là xong
Chắc vậy không chắc cho nắm
Xét phương trình : \(x^2-\left(2m+3\right)x+m=0\)
Ta có : \(\Delta=\left[-\left(2m+3\right)\right]^2-4.1.m\)
\(=4m^2+12m+9-4m=4m^2+8m+9\)
\(=\left(2m+2\right)^2+5\)
Có : \(\left(2m+2\right)\ge0\forall m\Rightarrow\left(2m+2\right)^2+5>0\)
\(\Rightarrow\)phương trình luôn có hai nghiệm phân biệt \(x_1\)và\(x_2\)
Theo hệ thức VI-ÉT ta có :
\(\hept{\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}\left(^∗\right)}\)
Có : \(K=x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2\)
Thay \(\left(^∗\right)\)vào K ta được :
\(K=\left(2m+3\right)^2-2m\)
\(\Leftrightarrow K=4m^2+12m+9-2m\)
\(\Leftrightarrow K=4m^2+10m+9\)
\(\Leftrightarrow K=\left(2m+\frac{5}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy \(K_{min}=\frac{11}{4}\) đạt đc khi \(2m+\frac{5}{2}=0\Leftrightarrow m=-\frac{5}{4}\)
\(\Delta=m^2+8\ge8\forall m\)
=> \(\Delta>0\)=> PT có 2 nghiệm phân biệt với mọi m
Theo Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-2\end{cases}}\)
\(x_1^2+x_2^2-3x_1x_2=14\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=14\)
\(\Leftrightarrow m^2=14-10=4\)
\(\Leftrightarrow m=\pm2\)
Áp dụng hệ thức Vi-ét,ta có :
\(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-2\end{cases}}\)
Ta có : \(x_1^2+x_2^2-3x_1x_2=14\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=14\)
\(\Leftrightarrow m^2+10=14\Rightarrow m^2=4\Rightarrow m=\pm2\)
Theo vi-ét \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=m\\x_1.x_2=\frac{c}{a}=-2\end{cases}}\)
Thay vào ta có : \(x_1^2+x_2^2-3.x_1.x_2=14\)
\(< =>x_1^2+2.x_1.x_2+x_2^2-5.x_1.x_2=14\)
\(< =>\left(x_1+x_2\right)^2-5.x_1.x_2=14\)
\(< =>m^2-5.\left(-2\right)=m^2+10=14< =>\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)
Cách mình ko khác anh Tùng tí nào đâu
a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình
hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)
Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1
b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)
\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)
Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)
\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)
Vậy với \(m=0\)thỏa mãn yêu cầu bài toán
a/
PT có nghiệm \(x=\sqrt{2}\Rightarrow\left(m-1\right).2-2m.\sqrt{2}+m-2=0\)
\(\Leftrightarrow\left(3-2\sqrt{2}\right)m=4\Leftrightarrow m=\frac{4}{3-2\sqrt{2}}\)
b/
\(\left(m-1\right)x^2-2mx+m-2=0\text{ (1)}\)
\(+m-1=0\Leftrightarrow m=1\text{ thì }\left(1\right)\text{ trở thành }-2x+1-2=0\Leftrightarrow x=-\frac{1}{2}\)(loại do chỉ có 1 nghiệm)
\(+m-1\ne0\Leftrightarrow m\ne1\)
\(\left(1\right)\text{ là một phương trình bậc 2 ẩn }x.\)
\(\left(1\right)\text{ có 2 nghiệm phân biệt }\Leftrightarrow\Delta'=m^2-\left(m-1\right)\left(m-2\right)>0\)
\(\Leftrightarrow3m-2>0\Leftrightarrow m>\frac{2}{3}\)
a, \(\Delta=\left(-m\right)^2-4\left(-2\right)=m^2+8>0\forall m\in R\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt \(\forall m\)
b, Theo vi-lét ta có: \(x_1+x_2=m\) và \(x_1x_2=-2\)
Ta có: \(x^2_1+x^2_2-3x_1x_2=14\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=14\)
\(\Leftrightarrow m^2+10=14\)
\(\Leftrightarrow m^2=4\)
\(\Leftrightarrow m=\pm2\)
Vậy .............