K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Δ}=\left(m-1\right)^2-4\left(m-2\right)\)

\(=m^2-2m+1-4m+8\)

\(=m^2-6m+9=\left(m-3\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>(m-3)^2>0

=>\(m-3\ne0\)

=>\(m\ne3\)

\(x^2-\left(m-1\right)x+m-2=0\)

=>\(x^2-\left(m-2\right)x-x+m-2=0\)

=>\(x\left(x-m+2\right)-\left(x-m+2\right)=0\)

=>\(\left(x-1\right)\left(x-m+2\right)=0\)

=>\(\left[{}\begin{matrix}x=1\\x=m-2\end{matrix}\right.\)

\(x_1^2+x_2=3\)

=>\(\left[{}\begin{matrix}1^2+\left(m-2\right)=3\\1+\left(m-2\right)^2=3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m-2=2\\\left(m-2\right)^2=2\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}m=4\\m-2=\sqrt{2}\\m-2=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=4\left(nhận\right)\\m=\sqrt{2}+2\left(nhận\right)\\m=-\sqrt{2}+2\left(nhận\right)\end{matrix}\right.\)

18 tháng 3 2016

m khác 0
tính \(\Delta\)
tìm đk m để\(\Delta\) lớn hơn 0
phân tích \(\left(x_1+x_2\right)^2-2x_1x_2-2\)

10 tháng 3 2021

x13+x23=(x1+x2)3-3x1x2(x1+x2)=23-3(-m2-4)2=10

<=> 6m2=-22 <=> m\(\in\varnothing\)

20 tháng 5 2019

Trả lời: 

       Sorry, mk ms lớp 7,ko làm đc lớp 9!

20 tháng 5 2019

-Tìm \(\Delta\)để tìm điều kiện cho phương trình có 2 nghiệm

-Tìm tích \(x_1_{ }x_2=\frac{c}{a}\)để tìm đk cho 2 nghiệm khác 0

- Tìm tổng và tích 2 nghiệm theo định lí Vi-ét

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\)

\(\Leftrightarrow\frac{\left(x1+x2\right)^2}{x1x2}=\frac{-1}{2}\)

Thay tích với tổng vào để tính nhé.Mình bận chỉ hướng dẫn ý chính. Có gì sai sót bỏ qua cho

6 tháng 9 2020

a)

XÉT    \(\Delta=4\left(m+1\right)^2-8m=4m^2+8m+4-8m=4m^2+4\ge0+4=4>0\)

=>   \(\Delta>0\)     

=>    PT CÓ 2 NGHIỆM PHÂN BIỆT VỚI MỌI GIÁ TRỊ m.

b)

\(\Rightarrow\hept{\begin{cases}x_1+x_2=-2\left(m+1\right)\left(1\right)\\x_1.x_2=2m\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x_1^2+x_2^2+2x_1x_2=4\left(m+1\right)^2\)

<=>   \(x_1^2+x_2^2+4m=4m^2+8m+4\)

<=>   \(x_1^2+x_2^2=4m^2+4m+4=4m^2+4m+1+3=\left(2m+1\right)^2+3\ge3\forall m\)

=>    \(x_1^2+x_2^2\ge3\)

DẤU "=" XẢY RA <=>   \(\left(2m+1\right)^2=0\Leftrightarrow m=-\frac{1}{2}\)

6 tháng 9 2020

a) \(\Delta^'=\left(m+1\right)^2-2m=m^2+2m+1-2m=m^2+1>0\forall m\)

Vậy phương trình có 2 nghiệm phân biệt \(x_1;x_2\forall m\)

b) Theo định lý Vi-et: \(\hept{\begin{cases}x_1+x_2=-2\left(m+1\right)=-2m-2\\x_1x_2=2m\end{cases}}\)

\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

                     \(=\left(-2m-2\right)^2-2.2m\)

                     \(=4m^2+8m+4-4m\)

                     \(=4m^2+4m+4=\left(2m+1\right)^2+3\ge3\)

Dấu "=" xảy ra khi \(m=\frac{-1}{2}\)

\(\Rightarrow\hept{\begin{cases}x_1+x_2=-1\\x_1x_2=-1\end{cases}}\)

Đến đây thì bạn tìm ra \(x_1;x_2\)là nghiệm của \(x^2+x-1=0\)và kết luận GTNN.