K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

em chịu em lớp 5

25 tháng 7 2015

câu 1:

Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)

có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)

\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)

câu 2 mk k bik lm nha 

 

4 tháng 7 2020

a, Để phương trình có 2 nghiệm phân biệt thì 

\(\Delta>0< =>\left(-2m\right)^2-4.\left(2m^2-1\right)>0\)

\(< =>4m^2-8m^2+4>0\)

\(< =>-4m^2+4>0\)

\(< =>m< 1\)

b, bạn dùng viet và phân tích 1 xíu là ok

Ta có : \(x^2-2mx+2m^2-1=0\left(a=1;b=-2m;c=2m^2-1\right)\)

a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)

 \(\left(-2m\right)^2-4\left(2m^2-1\right)>0\)

\(\Leftrightarrow4m^2-8m^2+4>0\Leftrightarrow-4m^2+4>0\)

\(\Leftrightarrow-4m^2>-4\Leftrightarrow m< 1\)

b, Theo hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{2m}{1}=2m\\P=x_1x_2=\frac{c}{a}=\frac{2m^2-1}{1}=2m^2-1\end{cases}}\)

Ta có : \(x_1^3-x_1^2+x_2^3-x_2^2=2\)

Ta có thể viết là : \(x_1^3+x_2^3-\left(x_1^2+x_2^2\right)=2\)tương tự vs \(x_1^3+x_2^3-\left(x_1+x_2\right)^2=2\)

\(\Leftrightarrow x_1^3+x_2^3-\left(2m\right)^2=2\Leftrightarrow x_1^3+x_2^3-4m^2=2\)(*)

Phân tích nốt : cái \(x_1^3+x_2^3\)tớ ko biết phân tích thế nào, lm chỉ sợ sai