Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=b^2-4ac=4^2-4m\)
Để pt có 2 nghiệm \(x_1,x_2\) thì \(\Delta\ge0\Rightarrow16-4m\ge0\Rightarrow m\le4\)
Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{b}{a}=4\\x_1x_2=-\dfrac{c}{a}=-m\end{matrix}\right.\)
Ta có : \(x_1^2+x_2^2=10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)
\(\Leftrightarrow4^2-2.\left(-m\right)=10\)
\(\Leftrightarrow16+2m=10\)
\(\Leftrightarrow m=-3\)
a: Khi m=-5 thì pt sẽ là x^2-5x-6=0
=>x=6 hoặc x=-1
b:
Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29
Để pt có hai nghiệm thì -4m+29>=0
=>m<=29/4
x1-x2=3
=>(x1-x2)^2=9
=>(x1+x2)^2-4x1x2=9
=>5^2-4(m-1)=9
=>4(m-1)=25-9=16
=>m-1=4
=>m=5(nhận)
c: 2x1-3x2=5 và x1+x2=5
=>x1=4 và x2=1
x1*x2=m-1
=>m-1=4
=>m=5(nhận)
b) Theo hệ thức Vi-et ta có:
Theo bài ra:
3 x 1 - x 2 = 8
⇔ 3 x 1 - x 2 = 2( x 1 + x 2 )
⇔ x 1 = 3 x 2
Khi đó: x 1 + x 2 = 4 ⇔ 3 x 2 + x 2 = 4 ⇔ 4 x 2 = 4 ⇔ x 2 = 1
⇒ x 1 = 3
⇒ x 1 x 2 = 3 ⇒ m - 2 = 3 ⇔ m = 5
Vậy với m = 5 thì phương trình có 2 nghiệm thỏa mãn yêu cầu đề bài.
a=1; b=-4; c=-m^2+3
Δ=(-4)^2-4*1*(-m^2+3)
=16+4m^2-12=4m^2+4>=4>0
=>Phương trình luôn có hai nghiệm phân biệt
5x1+x2=0 và x1+x2=4
=>4x1=-4 và x1+x2=4
=>x1=-1 và x2=5
x1x2=-m^2+3
=>-m^2+3=-5
=>m^2-3=5
=>m^2=8
=>\(m=\pm2\sqrt{2}\)