Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)
=>(5) luôn có nghiệm
b: \(x_1^2+x_2^2-2x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)
=>\(\left(m-1\right)^2-4\cdot\left(-m\right)-\left(-m\right)^2=2m+1\)
=>\(m^2-2m+1+4m-m^2=2m+1\)
=>2m+1=2m+1(luôn đúng)
a: \(\text{Δ}=\left(m-5\right)^2-4\left(-m+6\right)\)
\(=m^2-10m+25+4m-24\)
\(=m^2-6m+1=\left(m-3\right)^2-8\)
Để phương trình có hai nghiệm thì \(\left(m-3\right)^2>=8\)
\(\Leftrightarrow\left[{}\begin{matrix}m>=2\sqrt{2}+3\\m< =-2\sqrt{2}+3\end{matrix}\right.\)
Theo đề, ta có: \(\left\{{}\begin{matrix}2x_1+3x_2=13\\x_1+x_2=m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+3x_2=13\\2x_1+2x_2=2m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=13-2m+10=-2m+25\\x_1=m-5+2m-25=3m-30\end{matrix}\right.\)
Ta có: \(x_1x_2=-m+6\)
\(\Leftrightarrow\left(2m-25\right)\left(3m-30\right)=m-6\)
\(\Leftrightarrow6m^2-60m-75m+750-m+6=0\)
\(\Leftrightarrow6m^2-136m+756=0\)
hay \(m\in\left\{\dfrac{34+\sqrt{22}}{3};\dfrac{34-\sqrt{22}}{3}\right\}\)
b: \(x_1+x_2+x_1x_2-11=0\)
\(\Leftrightarrow m-5-m+6-11=0\)
=>-12=0(vô lý)
Lời giải:
a)
\(\Delta'=(m-1)^2-7(-m^2)=m^2-2m+1+7m^2=8m^2-2m+1\)
b)
Ta thấy \(\Delta'=8m^2-2m+1=8(m^2-\frac{1}{4}m+\frac{1}{8^2})+\frac{7}{8}\)
\(=8(m-\frac{1}{8})^2+\frac{7}{8}\geq \frac{7}{8}>0, \forall m\in\mathbb{R}\)
Do đó PT có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
2. Tách gì hả bạn?
8m2 - 2m + 1 = 8(m2 - \(\frac{1}{4}\)m + \(\frac{1}{8^2}\)) +\(\frac{7}{8}\)
ngoài cách tách đó ra còn cách nào nữa ko ạ
\(Q=2017x_1-2016x_1x_2+2017x_2-2018x_1x_2\)
\(=2017\left(x_1+x_2\right)-4034x_1x_2\)
\(=2017\left(2m+2\right)-4034\left(m-3\right)\)
=4034m+4034-4034m+12102
=16136
\(\Delta=\frac{1}{4}-4m^2\ge0\Rightarrow x^2\le\frac{1}{16}\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{1}{2}\\x_1x_2=m^2\end{matrix}\right.\)
\(P=x_1^3+x_1+x_2^3+x_2=\left(x_1^3+x_2^3\right)+x_1+x_2\)
\(P=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+x_1+x_2\)
\(P=-\frac{1}{8}+\frac{3}{2}m^2-\frac{1}{2}=\frac{3}{2}m^2-\frac{5}{8}\le\frac{3}{2}.\frac{1}{16}-\frac{5}{8}=-\frac{17}{32}\)
\(P_{max}=-\frac{17}{32}\) khi \(m=\pm\frac{1}{4}\)
Cho phương trình: x2 - (2m - 1)x - m = 0
Co \(\Delta=\left(-\left(2m-1\right)\right)^2-4.1.\left(-m\right)=4m^2-4m+1+4m=4m^2+1>0\)
Vi \(\Delta>0\) nen PT luon co ngiem phan biet voi moi gia tri cua m
Chào ng đẹp
Ta có Ix1-x2I=căn((x1-x2)^2)=căn((x1+x2)^2-4x1x2)=1 (*)
áp dụng viét
x1+x2=4m
x1x2=4m-1
thay vô (*)
ta dc căn(16m-4(4m-1))=1
giải pt ra
câu mở đầu của bạn hay gê
sao ko bình phương 2 vế cho mất căn đi có phải dễ tính hơn ko