K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2016

Chào ng đẹp

Ta có Ix1-x2I=căn((x1-x2)^2)=căn((x1+x2)^2-4x1x2)=1 (*)

áp dụng viét

x1+x2=4m

x1x2=4m-1

thay vô (*)

ta dc           căn(16m-4(4m-1))=1

giải pt ra

28 tháng 4 2016

câu mở đầu của bạn hay gê

sao ko bình phương 2 vế cho mất căn đi có phải dễ tính hơn ko

a: \(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)

=>(5) luôn có nghiệm

b: \(x_1^2+x_2^2-2x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)

=>\(\left(x_1+x_2\right)^2-4x_1x_2-\left(x_1\cdot x_2\right)^2=2m+1\)

=>\(\left(m-1\right)^2-4\cdot\left(-m\right)-\left(-m\right)^2=2m+1\)

=>\(m^2-2m+1+4m-m^2=2m+1\)

=>2m+1=2m+1(luôn đúng)

7 tháng 2 2017

vyjbhtu yi

a: \(\text{Δ}=\left(m-5\right)^2-4\left(-m+6\right)\)

\(=m^2-10m+25+4m-24\)

\(=m^2-6m+1=\left(m-3\right)^2-8\)

Để phương trình có hai nghiệm thì \(\left(m-3\right)^2>=8\)

\(\Leftrightarrow\left[{}\begin{matrix}m>=2\sqrt{2}+3\\m< =-2\sqrt{2}+3\end{matrix}\right.\)

Theo đề, ta có: \(\left\{{}\begin{matrix}2x_1+3x_2=13\\x_1+x_2=m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+3x_2=13\\2x_1+2x_2=2m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=13-2m+10=-2m+25\\x_1=m-5+2m-25=3m-30\end{matrix}\right.\)

Ta có: \(x_1x_2=-m+6\)

\(\Leftrightarrow\left(2m-25\right)\left(3m-30\right)=m-6\)

\(\Leftrightarrow6m^2-60m-75m+750-m+6=0\)

\(\Leftrightarrow6m^2-136m+756=0\)

hay \(m\in\left\{\dfrac{34+\sqrt{22}}{3};\dfrac{34-\sqrt{22}}{3}\right\}\)

b: \(x_1+x_2+x_1x_2-11=0\)

\(\Leftrightarrow m-5-m+6-11=0\)

=>-12=0(vô lý)

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Lời giải:

a)

\(\Delta'=(m-1)^2-7(-m^2)=m^2-2m+1+7m^2=8m^2-2m+1\)

b)

Ta thấy \(\Delta'=8m^2-2m+1=8(m^2-\frac{1}{4}m+\frac{1}{8^2})+\frac{7}{8}\)

\(=8(m-\frac{1}{8})^2+\frac{7}{8}\geq \frac{7}{8}>0, \forall m\in\mathbb{R}\)

Do đó PT có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

2. Tách gì hả bạn?

21 tháng 3 2019

8m2 - 2m + 1 = 8(m2 - \(\frac{1}{4}\)m + \(\frac{1}{8^2}\)) +\(\frac{7}{8}\)

ngoài cách tách đó ra còn cách nào nữa ko ạ

\(Q=2017x_1-2016x_1x_2+2017x_2-2018x_1x_2\)

\(=2017\left(x_1+x_2\right)-4034x_1x_2\)

\(=2017\left(2m+2\right)-4034\left(m-3\right)\)

=4034m+4034-4034m+12102

=16136

17 tháng 5 2016

a) đenta phẩy=m^2-m^2+1>0

=>.........................

NV
23 tháng 10 2020

\(\Delta=\frac{1}{4}-4m^2\ge0\Rightarrow x^2\le\frac{1}{16}\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{1}{2}\\x_1x_2=m^2\end{matrix}\right.\)

\(P=x_1^3+x_1+x_2^3+x_2=\left(x_1^3+x_2^3\right)+x_1+x_2\)

\(P=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+x_1+x_2\)

\(P=-\frac{1}{8}+\frac{3}{2}m^2-\frac{1}{2}=\frac{3}{2}m^2-\frac{5}{8}\le\frac{3}{2}.\frac{1}{16}-\frac{5}{8}=-\frac{17}{32}\)

\(P_{max}=-\frac{17}{32}\) khi \(m=\pm\frac{1}{4}\)

17 tháng 4 2016

Cho phương trình: x- (2m - 1)x - m = 0       

Co \(\Delta=\left(-\left(2m-1\right)\right)^2-4.1.\left(-m\right)=4m^2-4m+1+4m=4m^2+1>0\)

Vi \(\Delta>0\) nen PT luon co ngiem phan biet voi moi gia tri cua m