Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Thay m =0 vào phương trình ta được: \(x^2-2x=0\Rightarrow x\left(x-2\right)=0\)0
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Phương trình \(x^2-2x-2m^2=0\)có các hệ số a = 1; b = -2; c = -2m2
\(\Rightarrow\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-2m^2\right)=4+8m^2\)(luôn dương)
Giả sử phương trình có 2 nghiệm x1; x2 thì \(\hept{\begin{cases}x_1=\frac{2+\sqrt{4+8m^2}}{2}=1+\sqrt{1+2m^2}\\x_2=\frac{2-\sqrt{4+8m^2}}{2}=1-\sqrt{1+2m^2}\end{cases}}\)
Thay vào dữ kiện \(x_1^2=4x_2^2\), ta được:
\(\left(1+\sqrt{1+2m^2}\right)^2=4\left(1-\sqrt{1+2m^2}\right)^2\)
\(\Leftrightarrow1+1+2m^2+2\sqrt{1+2m^2}=4-8\sqrt{1+2m^2}+4+8m^2\)
\(\Leftrightarrow10\sqrt{1+2m^2}=6m^2+6\)
Bình phương hai vế:
\(100\left(1+2m^2\right)=36m^4+72m^2+36\)
\(\Leftrightarrow36m^4-128m^2-64=0\)
Đặt \(m^2=t\left(t\ge0\right)\)
Phương trình trở thành \(36t^2-128t-64=0\)
\(\Delta=128^2+4.36.64=25600,\sqrt{\Delta}=160\)
\(\Rightarrow\orbr{\begin{cases}t=\frac{128+160}{72}=4\\t=\frac{128-160}{72}=\frac{-4}{9}\left(L\right)\end{cases}}\)
Vậy t = 4\(\Rightarrow m=\pm2\)
Vậy khi m =-2 hoặc 2 thì phương trình có 2 nghiệm \(x_1;x_2\)khác 0 và thỏa mãn điều kiện \(x_1^2=4x_2^2\)
Ta có : \(x^2-5x+m=0\left(a=1;b=-5;c=m\right)\)
Theo hệ thức Vi et ta có : \(x_1+x_2=5;x_1x_2=m\)
Theo bài ra ta có : \(x_1^2+x_2^2+7=2\sqrt{x_2^2-3}+6x_1\)
Thay \(x_1;x_2\)lần lượt là \(x;y\)thì ta có phương trình mới :
\(x^2+y^2+7=2\sqrt{y^2-3}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-3}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-\sqrt{3}^2}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y-\sqrt{3}}^2+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2y-2\sqrt{3}+6x\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\left(y-\sqrt{3}+3x\right)\)
\(\Leftrightarrow\frac{\left(x+y\right)^2-2xy+7}{2}=y-\sqrt{3}+3x\)
Mời idol về giải chứ chưa đi sâu vào mấy cái căn này lắm, phá mãi mới ra mà chả biết nhóm vào đâu.
\(\Delta'=\left(a-1\right)^2-\left(a^2+a-2\right)=-3a+3\)
Để phương trình có hai nghiệm \(x_1;x_2\) thì \(\Delta'\ge0\Leftrightarrow-3a+3\ge0\Leftrightarrow a\le1\)
Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=2\left(a-1\right)\\x_1.x_2=a^2+a-2\end{cases}}\)
Vậy thì \(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(a-1\right)^2-2\left(a^2+a-2\right)\)
\(=2a^2-10a+8=2\left(a^2-5a+\frac{25}{4}\right)-\frac{9}{2}=2\left(a-\frac{5}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(\text{min}P=-\frac{9}{2}\Leftrightarrow a=\frac{5}{2}.\)
Bài giải :
Δ'=(a−1)2−(a2+a−2)=−3a+3
Để phương trình có hai nghiệm x1;x2 thì Δ'≥0⇔−3a+3≥0⇔a≤1
Áp dụng hệ thức Viet ta có: {
x1+x2=2(a−1) |
x1.x2=a2+a−2 |
Vậy thì P=x12+x22=(x1+x2)2−2x1.x2=4(a−1)2−2(a2+a−2)
=2a2−10a+8=2(a2−5a+254 )−92 =2(a−52 )2−92
Với a≤1⇒P≥0
Vậy minP = 0 khi a = 1.
a; \(\Delta\)' = \([\) -(m+1)\(]\) 2-1.(m2+m-1)
\(\Leftrightarrow\) m2 + 2m +1- m2- m + 1 \(\Leftrightarrow\) m + 2
phương trình có 2 nghiệm \(\Leftrightarrow\Delta\) > 0
\(\Leftrightarrow\) m + 2 > 0 \(\Leftrightarrow\) m > -2
vậy m > -2 thì phương trình có 2 nghiệm
b; x1 + x2 = \(\dfrac{-b}{a}\) = 2.(m + 1) = 2m + 2 (1)
x1 . x2 = \(\dfrac{c}{a}\) = m2 + m - 1 (2)
x12 + x22 = (x1 + x2)2 - 2x1.x2 (3)
thay (1) ; (2) vào (3)
\(\Leftrightarrow\) (2m + 2)2 - 2.(m2 + m - 1)
= 4m2+ 8m + 4 - 2m2- 2m + 2 = 2m2 + 6m + 6
Pt có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(m-1\right)^2-4\left(5m-5\right)\ge0\)
\(\Leftrightarrow m^2-2m+1-20m+20\ge0\)
\(\Leftrightarrow m^2-22m+21\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}m\le1\\m\ge21\end{cases}}\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=1-m\\x_1x_2=5m-5\end{cases}}\)
Chắc đề là \(x_1^2+x_2^2=3x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2=5x_1x_2\)
\(\Leftrightarrow\left(1-m\right)^2=5.\left(5m-5\right)\)
\(\Leftrightarrow1-2m+m^2=25m-25\)
\(\Leftrightarrow m^2-27m+26=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=26\\m=1\end{cases}\left(Tm\right)}\)
Vậy .........
Đk pt có 2 nghiêm pb
\(\Delta=a^2-4>0\)
=>\(a^2>4\)
=>\(\orbr{\begin{cases}a>2\\a< -2\end{cases}}\)
theo Đly Vi-et, ta có x1+x2=-a
x1.x2=1
\(\frac{x_1^2}{x_2^2}+\frac{x_2^2}{x_1^2}=\frac{x_1^4+x_2^4}{x_1^2.x_2^2}=\frac{\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2}{1}=\left(\left(x_1+x_2\right)^2-2x_1x_2\right)^2-2=\left(a^2-2\right)^2-2\)
=>(a2-2)2-2 >7
=>(a2-2)2 >9
=>\(\orbr{\begin{cases}a^2-2>3\\a^2-2< -3\end{cases}=>\orbr{\begin{cases}a^2>5\\a^2< -1\left(loai\right)\end{cases}=>\orbr{\begin{cases}a>\sqrt{5}\\a< -\sqrt{5}\end{cases}}}\left(tmdk\right)}\)