Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y
Bài 1
Ta có :A=(x+y)(x+4y)(x+2y)(x+3y)+42
=(x2+5xy+4y2)(x2+5xy+6y2)+42
Đặt x2+5xy+5y2=t (t thuộc Z)
Khi đó A=(t-1)(t+1)+42
A=t2-12+42
A=(x2+5xy+5y2)2-12+42
Vì x, y thuộc Z suy ra x2 thuộc Z, 5xy thuộc Z, 5y2thuộc Z
Suy ra x2+5xy+5y2 thuộc Z
Suy ra (x2+5xy+5y2)2 là số chính phương
Ta lại có 12 và 42 cũng là số chính phương
Suy ra A là số chính phương (đpcm)
Câu 1 đây bạn nhé. Mình ko chắc là nó đúng 100% đâu.
a = \(\sqrt{\sqrt{5} - \sqrt{3 -\sqrt{18}- 12\sqrt{5}}}\)