Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
Lời giải:
PT có \(\Delta'=1+3m^2>0, \forall m\in\mathbb{R}\) nên luôn có hai nghiệm phân biệt với mọi $m$ thực.
Áp dụng định lý Viete cho phương trình bậc 2 ta có:
\(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=-3m^2\end{matrix}\right.\)
Để PT có hai nghiệm khác $0$ thì chỉ cần \(x_1x_2\neq 0\Leftrightarrow -3m^2\neq 0\Leftrightarrow m\neq 0\)
Biến đổi:
\(\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{8}{3}\)
\(\Leftrightarrow \frac{x_1^2-x_2^2}{x_1x_2}=\frac{8}{3}\)\(\Leftrightarrow \frac{(x_1-x_2)(x_1+x_2)}{x_1x_2}=\frac{8}{3}\)
\(\Leftrightarrow \frac{2(x_1-x_2)}{-3m^2}=\frac{8}{3}\Rightarrow x_1-x_2=-4m^2\Rightarrow (x_1-x_2)^2=16m^4\)
\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=16m^4\)
\(\Leftrightarrow 4+12m^2=16m^4\)
\(\Leftrightarrow 4m^4-3m^2-1=0\Leftrightarrow (m^2-1)(4m^2+1)=0\)
Hiển nhiên \(4m^2+1> 0,\forall m\) nên \(m^2-1=0\Leftrightarrow m=\pm 1\) (thỏa mãn)
đk bài toán \(\Leftrightarrow\left\{{}\begin{matrix}x_1;x_2\ne0\\\dfrac{x_1}{x_2}-\dfrac{x_2}{x_1}=\dfrac{8}{3}\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
(1) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\f\left(0\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1+3m^2\ge0\\-3m^2\ne0\end{matrix}\right.\) \(\Rightarrow m\ne0\)
hằng đẳng thức có \(\Leftrightarrow\dfrac{x_1^2-x_2^2}{x_1.x_2}=\dfrac{\left(x_1-x_2\right)\left(x_1+x_2\right)}{x_1x_2}\)
công thức nghiệm có \(x_{1,2}=1\pm\sqrt{1+3m^2}\)
vi et có \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=-3m^2\end{matrix}\right.\)
(2) \(\Leftrightarrow\dfrac{2.\left(x_1-x_2\right)}{-3m^2}=\dfrac{8}{3}\) (3)
có -3m^2 <0 mọi m khác 0 =>\(x_1-x_2< 0\) \(\Rightarrow\left\{{}\begin{matrix}x_1=1-\sqrt{1+3m^2}\\x_2=1+\sqrt{1+3m^2}\end{matrix}\right.\)
(3) \(\Leftrightarrow\dfrac{2\left[-2\sqrt{1+3m^2}\right]}{-3m^2}=\dfrac{8}{3}\)
\(\Leftrightarrow\sqrt{3m^2+1}=2m^2\) \(\Leftrightarrow4m^4-3m^2-1=0\)
đặt m^2= t; => t >0
\(\Leftrightarrow4t^2-3t-1=0\left\{a+b+c=0\right\}\)
\(\left[{}\begin{matrix}t_1=1\\t_2=-\dfrac{1}{4}\left(l\right)\end{matrix}\right.\)
kết luận m =+-1
Ta có \(\Delta\) = (-2)2 - 4 . 1 . (-3m2)
= 4 + 12m2
Ta có m2 \(\ge\) 0 => 12m2 \(\ge\) 0
=> 4 + 12m2 > 0
=> Phương trình luôn có nghiệm với mọi m
Ta có x1 + x2 = \(\dfrac{-b}{a}\) = \(\dfrac{-\left(-2\right)}{1}\) = 2
x1x2 = \(\dfrac{c}{a}=\dfrac{-3m^2}{1}\) = -3m2
\(\dfrac{x_1}{x_2}-\dfrac{x_2}{x_1}\) = \(\dfrac{8}{3}\)
=> 3x12 - 3x22 = 8x1x2
=> x12 - x22 = \(\dfrac{8}{3}\) x1x2
=> ( x1 + x2 ) . ( x1 - x2 ) = \(\dfrac{8}{3}\)x1x2
=> 2( x1 - x2 ) = \(\dfrac{8}{3}\) . (-3m2)
=> 2( x1 - x2 ) = -8m2
=> x1 - x2 = -4m2
=> \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1-x_2=-4m^2\end{matrix}\right.\)
Giải bằng phương pháp thế, ta được
=> \(\left\{{}\begin{matrix}x_1=2-2m^2\\x_2=2m^2\end{matrix}\right.\)
để có hai nghiệm khác 0
=> \(\left\{{}\begin{matrix}2-2m^2\ne0\\2m^2\ne0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2m^2\ne2\\m^2\ne0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m^2\ne1\\m\ne0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m\ne1\\m\ne0\end{matrix}\right.\)
Phương trình luôn có nghiệm với mọi m( m \(\ne\) 1; 0 ) thỏa mãn điều kiện \(\dfrac{x_1}{x_2}-\dfrac{x_2}{x_1}\) = \(\dfrac{8}{3}\)
a) Dùng hệ thức Viét ta có:
\(x_1x_2=\dfrac{-35}{1}=-35\\ \Leftrightarrow7x_2=-35\\ \Leftrightarrow x_2=-5\\ x_1+x_2=\dfrac{-m}{1}=-m\\ \Leftrightarrow7+\left(-5\right)=-m\\ \Leftrightarrow-m=2\\ \Leftrightarrow m=-2\)
b) Dùng hệ thức Viét ta có:
\(x_1+x_2=\dfrac{-\left(-13\right)}{1}=13\\ \Leftrightarrow12,5+x_2=13\\ \Leftrightarrow x_2=0,5\\ x_1x_2=\dfrac{m}{1}=m\\ \Leftrightarrow12,5\cdot0,5=m\\ \Leftrightarrow m=6,25\)
c) Dùng hệ thức Viét ta có:
\(x_1+x_2=\dfrac{-3}{4}\\ \Leftrightarrow-2+x_2=\dfrac{-3}{4}\\ \Leftrightarrow x_2=\dfrac{5}{4}\\ x_1x_2=\dfrac{-m^2+3m}{4}\\ \Leftrightarrow4x_1x_2=-m^2+3m\\ \Leftrightarrow4\cdot\left(-2\right)\cdot\dfrac{5}{4}+m^2-3m=0\\ \Leftrightarrow m^2-3m-10=0\\ \Leftrightarrow m^2-5m+2m-10=0\\ \Leftrightarrow m\left(m-5\right)+2\left(m-5\right)=0\\ \Leftrightarrow\left(m+2\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2\\m=5\end{matrix}\right.\)
d) Dùng hệ thức Viét ta có:
\(x_1x_2=\dfrac{5}{3}\\ \Leftrightarrow\dfrac{1}{3}x_2=\dfrac{5}{3}\\ \Leftrightarrow x_2=5\\ x_1+x_2=\dfrac{-\left[-2\left(m-3\right)\right]}{3}=\dfrac{2\left(m-3\right)}{3}=\dfrac{2m-6}{3}\\ \Leftrightarrow3\left(x_1+x_2\right)=2m-6\\ \Leftrightarrow3\left(\dfrac{1}{3}+5\right)=2m-6\\ \Leftrightarrow3\cdot\dfrac{16}{3}+6=2m\\ \Leftrightarrow16+6=2m\\ \Leftrightarrow22=2m\\ \Leftrightarrow m=11\)
\(x^2-3mx-m=0\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=3m\\x_1x_2=-m\end{matrix}\right.\)
Ta có \(A=\dfrac{m^2}{x_2^2+3mx_1+3m}+\dfrac{x^2_1+3mx_2+3m}{m^2}\)
\(\Leftrightarrow A=\dfrac{m^2}{x^2_2+\left(x_1+x_2\right)x_1+3m}+\dfrac{x^2_1+\left(x_1+x_2\right)x_2+3m}{m^2}\)
\(\Leftrightarrow A=\dfrac{m^2}{x^2_2+x^2_1+x_1x_2+3m}+\dfrac{x^2_1+x^2_2+x_1x_2+3m}{m^2}\)
\(\Leftrightarrow A=\dfrac{m^2}{\left(x_1+x_2\right)^2-2x_1x_2+x_1x_2+3m}+\dfrac{\left(x_1+x_2\right)^2-2x_1x_2+x_1x_2+3m}{m^2}\)
\(\Leftrightarrow A=\dfrac{m^2}{\left(3m\right)^2-2\left(-m\right)+\left(-m\right)+3m}+\dfrac{\left(3m\right)^2-2\left(-m\right)+\left(-m\right)+3m}{m^2}\)
\(\Leftrightarrow A=\dfrac{m^2}{9m^2+4m}+\dfrac{9m^2+4m}{m^2}\)
\(\Leftrightarrow A=\dfrac{m^2}{m\left(9m+4\right)}+\dfrac{m\left(9m+4\right)}{m^2}\)
\(\Leftrightarrow A=\dfrac{m}{9m+4}+\dfrac{9m+4}{m}\)
\(\Leftrightarrow A=\dfrac{m^2+\left(9m+4\right)^2}{\left(9m+4\right)m}\)
Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm
\(\Rightarrow m^2+\left(9m+4\right)^2\ge2\sqrt{m^2\left(9m+4\right)^2}\)
\(\Rightarrow m^2+\left(9m+4\right)^2\ge2\left(9m+4\right)m\)
\(\Rightarrow\dfrac{m^2+\left(9m+4\right)^2}{\left(9m+4\right)m}\ge2\)
\(\Rightarrow A\ge2\)
Vậy \(A_{min}=2\)
Rút gọn A: ĐK tồn tại A: \(\left\{{}\begin{matrix}m\ne0\\9m^2+4m\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>0\\m\le-\dfrac{4}{9}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2_1+3mx_2+3m=3m\left(x_1+x_2\right)+4m\\x^2_2+3mx_1+3m=3m\left(x_1+x_2\right)+4m\\A=\dfrac{m}{3\left(x_1+x_2\right)+4}+\dfrac{3\left(x_1+x_2\right)+4}{m}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1=\dfrac{3m-\sqrt{9m^2+4m}}{2}\\x_2=\dfrac{3m+\sqrt{9m^2+4m}}{2}\end{matrix}\right.\) \(\Rightarrow x_1+x_2=3m\)
Thay vào biểu thức A
\(A=\dfrac{m}{9m+4}+\dfrac{9m+4}{m}=t+\dfrac{1}{t}\)
cần bổ xung đk cho A =>\(\left[{}\begin{matrix}m>0\\m< \dfrac{-4}{9}\end{matrix}\right.\) (*)
Hiển nhiên khi m> 0; giá trị A lớn--> đang tìm giá trị nhỏ nhất
xét khi m<-4/9 có A=2 khi m=-1/2 <-4/9 nhận
Đáp số : m=-1/2