Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
- Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
- từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
\(x^2-2mx+m-1=0\)
\(\Delta=b^2-4ac=4m^2-4\left(m-1\right)=4m^2-4m+4\)
\(=4\left(m^2-m+1\right)>0\)
\(=>m^2-m+1>0\)
\(=>m^2-2\times\frac{1}{2}m+\frac{1}{4}+\frac{3}{4}>0\)
\(=>\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Theo Vi-et ta có :\(\hept{\begin{cases}x_1x_2=m-1\\x_1+x_2=2m\end{cases}}\)
Ta có \(x_1^2+x_2^2=14\)
\(\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(4m^2-2\left(m-1\right)=14\)
\(4m^2-2m+2-14=0\)
\(4m^2-2m-12=0\)
\(\orbr{\begin{cases}m=2\\m=\frac{-3}{2}\end{cases}}\)
a) Ta có: \(\Delta'=\left(-m\right)^2+m+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
=> pt luôn có 2 nghiệm phân biệt
Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)
Theo bài ra, ta có: \(\hept{\begin{cases}S=2x_1+3x_2+3x_1+2x_2=5\left(x_1+x_2\right)=5.2m=10m\\P=\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)=6x_1^2+13x_1x_2+6x_2^2=6\left(x_1+x_2\right)^2+x_1x_2\end{cases}}\)
\(\hept{\begin{cases}S=10m\\P=6.\left(2m\right)^2-m-1=24m^2-m-1\end{cases}}\)
Hai nghiệm 2x1 + 3x2 và 3x1 + 2x2 là nghiệm của pt \(x^2-10mx+24m^2-m-1=0\)
b) Theo bài ra, ta có:
\(\left|2x_1+3x_2\right|+\left|3x_1+2x_2\right|=30\)
<=> \(\left(2x_1+3x_2\right)^2+\left(3x_1+2x_2\right)^2+2\left|\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)\right|=900\)
<=> \(\left(2x_1+3x_2+3x_1+2x_2\right)^2-2\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)+2\left|24m^2-m-1\right|=900\)
<=> \(\left(10m\right)^2-2\left(24m^2-m-1\right)+2\left|24m^2-m-1\right|=900\)
<=> \(52m^2+2m+2+2\left|24m^2-m-1\right|=900\)
<=> \(\left|24m^2-m-1\right|=449-26m^2-m\)
<=> \(\orbr{\begin{cases}24m^2-m-1=449-26m^2-m\left(đk:m\ge\frac{1+\sqrt{97}}{48}hoặcx\le\frac{1-\sqrt{97}}{48}\right)\\24m^2-m-1=26m^2+m-449\left(đk:\frac{1-\sqrt{97}}{48}\le x\le\frac{1+\sqrt{97}}{48}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}50m^2=1\\2m^2+2m-448=0\end{cases}}\)<=> \(\orbr{\begin{cases}m=\pm\frac{1}{5\sqrt{2}}\\m^2+m-224=0\end{cases}}\) (\(\orbr{\begin{cases}m=\frac{1}{5\sqrt{2}}\left(ktm\right)\\m=-\frac{1}{5\sqrt{2}}\left(tm\right)\end{cases}}\))
<=> \(m^2+m-224=0\)(có 2 nghiệm ko thõa mãn -> tự tính)
a) \(\Delta'=m^2+m+1>0\forall m\). Do đó phương trình cho luôn có hai nghiệm phân biệt
Khi đó, theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)
Suy ra \(\hept{\begin{cases}5\left(x_1+x_2\right)=10m\\\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)=6\left(x_1+x_2\right)^2+x_1x_2=24m^2-m-1\end{cases}}\)
Áp dụng định lí Viet đảo ta có được phương trình:
\(X^2-10mX+24m^2-m-1=0\left(1\right)\) nhận \(2x_1+3x_2\) và \(3x_1+2x_2\) làm nghiệm.
b) Để \(\left(1\right)\) có nghiệm thì \(100m^2\ge4\left(24m^2-m-1\right)\Leftrightarrow4m^2+4m+4\ge0\left(đ\right)\)
Ta có \(\left|X_1\right|+\left|X_2\right|=30\Leftrightarrow\left(X_1+X_2\right)^2-2X_1X_2+2\left|X_1X_2\right|-900=0\)
\(\Rightarrow100m^2-2\left(24m^2-m-1\right)+2\left|24m^2-m-1\right|+900=0\)
+) Nếu \(24m^2-m-1\ge0\) thì \(100m^2+900=0\Leftrightarrow m=\pm3\)
+) Nếu \(24m^2-m-1< 0\) thì \(4m^2+4m+904=0\)(Vô nghiệm)
Vậy \(m=\pm3.\)
Lời giải:
a) Khi $m=1$ thì pt trở thành:
$x^2-2x-5=0$
$\Leftrightarrow (x-1)^2=6$
$\Rightarrow x=1\pm \sqrt{6}$
b) Để $x_1=3$ là nghiệm của pt thì:
$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$
Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$
c)
$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$
Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$
Khi đó:
Để $x_1^2+x_2^2=13$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$
$\Leftrightarrow (2m)^2-2(2m-7)=13$
$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$
d)
$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$
$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$
Gọi hai kích thước của hình chữ nhật đó là a và b (ĐK: a > b > 0)
\(\Delta=\left(-2m\right)^2-4\left(2m-1\right)\)
= 4m2 - 8m + 4 = (2m - 2)2 > 0
Để pt có 2 no phân bt thì 2m - 2 khác 0 <=> m khác 1
Theo vi-et:\(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-1\end{cases}}\)
Theo đề: a.b = 7 <=> 2m - 1 = 7
<=> m = 4
Vậy m = 4 là gtri cần tìm