Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Khi $m=1$ thì pt trở thành:
$x^2-2x-5=0$
$\Leftrightarrow (x-1)^2=6$
$\Rightarrow x=1\pm \sqrt{6}$
b) Để $x_1=3$ là nghiệm của pt thì:
$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$
Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$
c)
$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$
Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$
Khi đó:
Để $x_1^2+x_2^2=13$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$
$\Leftrightarrow (2m)^2-2(2m-7)=13$
$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$
d)
$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$
$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$
a: Δ=(-2m)^2-4(2m-3)
=4m^2-8m+12
=4m^2-8m+4+8=(2m-2)^2+8>0 với mọi m
=>PT luôn có hai nghiệm pb
b: PT có hai nghiệm trái dấu
=>2m-3<0
=>m<3/2
a
Ta có:
\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)
Nên phương trình luôn có 2 nghiệm phân biệt với mọi m
b
Phương trình có 2 nghiệm trái dấu thì \(2m-3< 0\Leftrightarrow m< \frac{3}{2}\)
Vậy .....................
a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)
\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)
=>(1) luôn có hai nghiệm phân biệt
b: (x1-x2)^2=32
=>(x1+x2)^2-4x1x2=32
=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)
=>4m^2-8m+20-32=0
=>4m^2-8m-12=0
=>m^2-2m-3=0
=>m=3 hoặc m=-1
Lời giải:
Để pt có 2 nghiệm phân biệt thì:
$\Delta'=m^2-(2m-4)=m^2-2m+4>0$
$\Leftrightarrow (m-1)^2+3>0$
$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=2m$
$x_1x_2=2m-4$
Khi đó:
$x_1+2x_2=8$
$\Leftrightarrow 2m+x_2=8$
$\Leftrightarrow x_2=8-2m$
$\Leftrightarrow x_1=2m-x_2=2m-(8-2m)=4m-8$
$2m-4=x_1x_2=(4m-8)(8-2m)$
$\Leftrightarrow m-2=(2m-4)(8-2m)=2(m-2)(8-2m)$
$\Leftrightarrow (m-2)[2(8-2m)-1]=0$
$\Leftrightarrow (m-2)(15-4m)=0$
$\Leftrightarrow m=2$ hoặc $m=\frac{15}{4}$
a: a=1; b=2m; c=-1
Vì a*c<0 nên (2) luôn có hai nghiệm phân biệt
b: \(x_1^2+x_2^2-x_1x_2=7\)
=>\(\left(x_1+x_2\right)^2-3x_1x_2=7\)
=>\(\left(-2m\right)^2-3\cdot\left(-1\right)=7\)
=>4m^2=7-3=4
=>m^2=1
=>m=1 hoặc m=-1
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)
a, Thay m = 1 vào phương trình trên ta được
phương trình có dạng : \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)
b, Để phương trình có nghiệm kép \(\Delta=0\)
\(\Delta=9-4\left(m-1\right)=9-4m+4=0\Leftrightarrow13-4m=0\Leftrightarrow m=\frac{13}{4}\)
c, Để 2 nghiệm của pt là độ dài hcn khi 2 nghiệm đều dương
\(\hept{\begin{cases}\Delta=9-4\left(m+1\right)>0\\x_1+x_2=-\frac{b}{a}=3>0\\x_1x_2=\frac{c}{a}=m-1>0\end{cases}\Leftrightarrow1< m< \frac{13}{4}}\)
Diện tích hình chữ nhật là : \(x_1x_2=2\Leftrightarrow m-1=2\Leftrightarrow m=3\)( tmđk )
Gọi hai kích thước của hình chữ nhật đó là a và b (ĐK: a > b > 0)
\(\Delta=\left(-2m\right)^2-4\left(2m-1\right)\)
= 4m2 - 8m + 4 = (2m - 2)2 > 0
Để pt có 2 no phân bt thì 2m - 2 khác 0 <=> m khác 1
Theo vi-et:\(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-1\end{cases}}\)
Theo đề: a.b = 7 <=> 2m - 1 = 7
<=> m = 4
Vậy m = 4 là gtri cần tìm