Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
\(\Delta'=\left(m+3\right)^2-m^2-3=6m+6\ge0\Rightarrow m\ge-1\)
Khi đó, pt có 2 nghiệm thỏa: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+3\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m+3\right)^2-2\left(m^2+3\right)\)
\(A=2m^2+24m+30\)
Ta có: \(\left\{{}\begin{matrix}x_1-x_2=6\\x_1+x_2=2m+6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=m+6\\x_2=m\end{matrix}\right.\)
Mà \(x_1x_2=m^2+3\Leftrightarrow m\left(m+6\right)=m^2+3\Rightarrow6m=3\Rightarrow m=\frac{1}{2}\)
a)với m=1 ta có:
x2-(2*1+1)x+12+1-6=0
<=>x2-3x+2-6=0
<=>x2-3x-4=0
denta:(-3)2-(-4(1.4))=25
x1,2=\(\frac{3\pm\sqrt{25}}{2}\)=>x=-1 hoặc 4