K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

Để pt có 2 nghiệm phân biệt

\(\rightarrow\Delta>0\)

\(\rightarrow\left(2m+1\right)^2+48>0\left(\text{L đ}\right)\)

Với mọi x∈R

a. Có: \(x_1^2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2=25\)

Theo Vi-et:

\(\rightarrow\frac{4m^2+4m+1}{1}-4.\left(-12\right)=25\)

\(\rightarrow4m^2+4m+24=0\)

\(\rightarrow\left(2m+1\right)^2+23\left(\text{v ô l í }\right)\)

\(\rightarrow\) Không tồn tại m TM điều kiện

\(x_1^2-x_2^2-7\left(2m+1\right)=0\)

\(\rightarrow\left(x_1+x_2\right)^2-2x_1x_2-7\left(2m+1\right)=0\)

\(\rightarrow4m^2+4m+1+24-14m-7=0\)

b. \(\rightarrow4m^2-10m+8=0\)

\(\rightarrow\left(4m^2-10m+\frac{24}{5}\right)+\frac{67}{4}=0\)

\(\rightarrow\left(2m+\frac{5}{2}\right)^2+\frac{67}{4}=0\left(\text{v ô l í}\right)\)

\(\rightarrow\) Không tồn tại m TM điều kiện

24 tháng 5 2017

\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)=m^2-2m+1=\left(m-1\right)^2\)

Để pt có 2 nghiệm pb <=> delta >0 <=> m khác 1

Theo hệ thức vi ét ta có:

\(\hept{\begin{cases}x_1+x_2=3m-1\\x_1.x_2=2m^2-m\end{cases}}\)

Vì |x1+x2|=2

\(\Rightarrow x_1^2+x_2^2-2x_1.x_2=4\Rightarrow\left(x_1+x_2\right)^2-4x_1.x_2=4\)

\(\Rightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\Rightarrow\left(m-1\right)^2=4\Rightarrow\orbr{\begin{cases}m=3\\m=-1\left(L\right)\end{cases}}\)

Vậy m=3 thì thỏa mãn

24 tháng 5 2017

Theo vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=\frac{3m-1}{1}=3m-1\\x_1x_2=\frac{2m^2-m}{1}=2m^2-m\end{cases}}\)(1)

Theo đề: \(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow x_1^2+x_2^2-2x_1x_2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)(2)

Thay (1) vào (2) ta được pt:

\(\left(3m-1\right)^2-4.\left(2m^2-m\right)=4\)

\(\Rightarrow9m^2-6m+1-8m^2+4m-4=0\)

\(\Rightarrow m^2-2m-3=0\)

\(\Rightarrow\left(m-3\right)\left(m+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\)

Với m = 3 suy ra hệ \(\hept{\begin{cases}x_1+x_2=8\\x_1x_2=15\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=5\\x_2=3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=3\\x_2=5\end{cases}}\)

Với m = -1 suy ra hệ \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=3\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=-1\\x_2=-3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=-3\\x_2=-1\end{cases}}\)

                                       Vậy (x1;x2) = (5;3) , (3;5) , (-1;-3) , (-3;-1)

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

26 tháng 2 2021

x2 - 2( m + 1 )x + 2m - 4 = 0

1. Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 4( 2m - 4 )

= 4( m + 1 )2 - 8m + 16

= 4( m2 + 2m + 1 ) - 8m + 16

= 4m2 + 8m + 4 - 8m + 16

= 4m2 + 20

Dễ nhận thấy Δ ≥ 20 > 0 ∀ m

hay phương trình luôn có nghiệm với mọi m ( đpcm )

2. Dù là nghiệm kép hay nghiệm phân biệt thì hai nghiệm của phương trình đều viết được dưới dạng 

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{2m+2+\sqrt{4m^2+20}}{2}\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{2m+2-\sqrt{4m^2+20}}{2}\end{cases}}\)

Khi đó \(x_1^2+x_2^2=\left(\frac{2m+2+\sqrt{4m^2+20}}{2}\right)^2+\left(\frac{2m+2-\sqrt{4m^2+20}}{2}\right)^2\)

\(=\left(\frac{2m+2+2\sqrt{m^2+5}}{2}\right)^2+\left(\frac{2m+2-2\sqrt{m^2+5}}{2}\right)^2\)( em đưa 2 ra ngoài căn chắc chị hiểu )

\(=\left(\frac{2\left(m+1+\sqrt{m^2+5}\right)}{2}\right)^2+\left(\frac{2\left(m+1-\sqrt{m^2+5}\right)}{2}\right)^2\)

\(=\left(m+1+\sqrt{m^2+5}\right)^2+\left(m+1-\sqrt{m^2+5}\right)^2\)

\(=\left[\left(m+1\right)+\sqrt{m^2+5}\right]^2+\left[\left(m+1\right)-\sqrt{m^2+5}\right]^2\)

\(=\left(m+1\right)^2+2\left(m+1\right)\sqrt{m^2+5}+m^2+5+\left(m+1\right)^2-2\left(m+1\right)\sqrt{m^2+5}+m^2+5\)

\(=2\left(m+1\right)^2+2m^2+10\)

\(=2\left(m^2+2m+1\right)+2m^2+10\)

\(=2m^2+4m+2+2m^2+10=4m^2+4m+12\)

3. Em mới lớp 8 nên chưa học Min Max mấy dạng này chị thông cảm :(((((((((

26 tháng 2 2021

à xin phép em sửa một tí :))

1. ... = 4m2 + 20

Dễ nhận thấy Δ ≥ 20 > 0 ∀ m

hay phương trình luôn có hai nghiệm phân biệt với mọi m ( đpcm )

2. Vì phương trình luôn có hai nghiệm phân biệt nên hai nghiệm đó luôn viết được dưới dạng : ...

em quên nhìn cái " luôn có hai nghiệm phân biệt " sorry chị :(

x^2 -(3m-1)x +2m^2 -m=0
a) Khi m=1 ta có phương trình như sau:
x^2 -(3.1 -1)x +2.1-1=0
<=> x^2 -2x +1=0
<=>(x-1)^2 =0
<=>x=1

4 tháng 7 2020

a, Để phương trình có 2 nghiệm phân biệt thì 

\(\Delta>0< =>\left(-2m\right)^2-4.\left(2m^2-1\right)>0\)

\(< =>4m^2-8m^2+4>0\)

\(< =>-4m^2+4>0\)

\(< =>m< 1\)

b, bạn dùng viet và phân tích 1 xíu là ok

Ta có : \(x^2-2mx+2m^2-1=0\left(a=1;b=-2m;c=2m^2-1\right)\)

a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)

 \(\left(-2m\right)^2-4\left(2m^2-1\right)>0\)

\(\Leftrightarrow4m^2-8m^2+4>0\Leftrightarrow-4m^2+4>0\)

\(\Leftrightarrow-4m^2>-4\Leftrightarrow m< 1\)

b, Theo hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{2m}{1}=2m\\P=x_1x_2=\frac{c}{a}=\frac{2m^2-1}{1}=2m^2-1\end{cases}}\)

Ta có : \(x_1^3-x_1^2+x_2^3-x_2^2=2\)

Ta có thể viết là : \(x_1^3+x_2^3-\left(x_1^2+x_2^2\right)=2\)tương tự vs \(x_1^3+x_2^3-\left(x_1+x_2\right)^2=2\)

\(\Leftrightarrow x_1^3+x_2^3-\left(2m\right)^2=2\Leftrightarrow x_1^3+x_2^3-4m^2=2\)(*)

Phân tích nốt : cái \(x_1^3+x_2^3\)tớ ko biết phân tích thế nào, lm chỉ sợ sai 

15 tháng 5 2017
Theo hệ thức Vi-ét ,có x1 + x2 = -b/a =-(-2)/1 = 2 => x1=2-x2 x1-x2 = c/a = m-3/1 = m-3 Ta có : x1^2 -2x2 +x1x2 =-12 mà x1= 2-x2 (cmt) => (2-x2)^2-2x2+(2-x2)x2=-12 (giải pt ra x2 ) (thế x2 tìm ra x1)
15 tháng 5 2017
Thay m = 3 => x^2 - 2x + 3-3 =0 <=> x^2 - 2x = 0 <=> x(x-2) = 0 <=> x =0 hay x -2 =0 <=> x= 0 hay x=2 Vậy ...