\(x^2-2\left(k-1\right)x-4k=0\)

Tìm k để phương trình có 2 ngh...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

Ta có △=\(b^2-4ac>0\Leftrightarrow\left[-2\left(k-1\right)\right]^2-4.1.\left(-4k\right)>0\Leftrightarrow4k^2-8k+4+16k^2>0\Leftrightarrow20k^2-8k+4>0\Leftrightarrow5k^2-2K+1>0\)(luôn đúng)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi k\(\in R\)

Theo định lí Vi-ét ta có \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{2k-2}{1}=2k-2\\x_1x_2=\frac{c}{a}=\frac{-4k}{1}=-4k\end{matrix}\right.\)

Mà ta có\(3x_1-x_2=2\Leftrightarrow3x_1+3x_2-4x_2=2\Leftrightarrow3\left(x_1+x_2\right)-4x_2=2\Leftrightarrow3\left(2k-2\right)-4x_2=2\Leftrightarrow6k-6-2=4x_2\Leftrightarrow6k-8=4x_2\Leftrightarrow x_2=\frac{3k-4}{2}\)

\(\Rightarrow x_1=2k-2-\frac{3k-4}{2}=\frac{4k-4-3k+4}{2}=\frac{k}{2}\)

Vậy \(x_1x_2=-4k\Leftrightarrow\frac{k}{2}.\frac{3k-4}{2}=-4k\Leftrightarrow3k^2-4k=-16k\Leftrightarrow3k^2+12k=0\Leftrightarrow k\left(k+4\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}k=0\\k=-4\end{matrix}\right.\)

Vậy k=0 hoặc k=-4 thì phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(3x_1-x_2=2\)

17 tháng 4 2019

dầu tiên bn tìm đenta phẩy

sau đó cm nó lớn hơn 0

theo hệ thức viet tính đc x1+x2=... và x1*x2=....

thay vào hệ thức đã cho tính đc ..

4 tháng 4 2016

dùng viet để giải

4 tháng 4 2016

dùng đen ta phẩy để giải pt. 

kết quả khi m >  \(\frac{5}{6}\)thì pt có nghiệm

theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)

                                x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)

theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

                       <=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)

thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.

14 tháng 1 2018

viet dc k bạn

2 tháng 4 2018

\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)

Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)

=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)

Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)

14 tháng 4 2018

có 2 nghiệm phân biệt chi và chỉ khi \(\Delta^,=\left(m-2\right)^2-m^2-2m+3>0\)

                                                                 \(\Leftrightarrow m^2-4m+4-m^2-2m+3>0\)

                                                                     \(\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)

16 tháng 4 2016

khó thế

16 tháng 4 2019

mik lớp 8 nên ko bt

16 tháng 4 2019

Pt trên có a=1, b=5, c=-3m+2

\(\Delta=b^2-4ac=25-4\cdot1\cdot\left(-3m+2\right)=17+12m\)

Để pt có hai nghiệm phân biệt thì \(\Delta>0\)<=> 17+12m >0  <=>m> 17/12

Theo hệ thức Viet, ta có:

\(\hept{\begin{cases}x_1+x_2=-5\\x_1\cdot x_2=-3m+2\end{cases}}\)

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1\cdot x_2=25-4\left(-3m+2\right)=17+12m=10\)

=> 12m = -7      <=>m=-7/12 (thỏa đkxđ)

Vậy với m=-7/12 thì phương trình có hai nghiệm x1, x2 thỏa (x1 - x2)^2 =10