K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Δ=(2m-2)^2-4*(-2m)

=4m^2-8m+4+8m=4m^2+4>0

=>Phương trình luôn có hai nghiệm phân biệt

b: x1+x2=2m-2; x1x2=-2m

c: x1^2+x2^2=4

=>(x1+x2)^2-2x1x2=4

=>(2m-2)^2-2*(-2m)=4

=>4m^2-8m+4+4m=4

=>4m^2-4m=0

=>m=0 hoặc m=1

a: Δ=(2m-2)^2-4*(-2m)

=4m^2-8m+4+8m=4m^2+4>0

=>Phương trình luôn có hai ngiệm phân biệt

b: x1+x2=2m-2; x1x2=-2m

6 tháng 5 2022

Cho phương trình x2 + 2 ( m + 3 )x + 2m - 11

a) Ta có:

△' = b'- ac = ( m + 3 )2 - 1 . ( 2m - 11 ) 

m2 - 6m + 9 - 2m + 11

△' = b'- ac = 

a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)

\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)

=>(1) luôn có hai nghiệm phân biệt

b: (x1-x2)^2=32

=>(x1+x2)^2-4x1x2=32

=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)

=>4m^2-8m+20-32=0

=>4m^2-8m-12=0

=>m^2-2m-3=0

=>m=3 hoặc m=-1

NV
7 tháng 4 2022

a.

\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0;\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=2m-4\end{matrix}\right.\)

c.

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow m^2-2\left(2m-4\right)=4\)

\(\Leftrightarrow m^2-4m+4=0\Rightarrow m=2\)

7 tháng 4 2022

a.\(\Delta=m^2-4\left(2m-4\right)=m^2-8m+16=\left(m-4\right)^2\ge0\)

=> pt luôn có nghiệm với mọi m

b.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=2m-4\end{matrix}\right.\)

c.\(x_1^2+x_2^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=4\)

\(\Leftrightarrow\left(-m\right)^2-2\left(2m-4\right)=4\)

\(\Leftrightarrow m^2-4m+8-4=0\)

\(\Leftrightarrow m^2-4m+4=0\)

\(\Leftrightarrow\left(m-2\right)^2=0\)

\(\Leftrightarrow m=2\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?

PT cuối cũng bị lỗi.

Bạn xem lại đề!

1 tháng 4 2021

Em sửa rồi ấy ạ

5 tháng 8 2021

a) \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\\ =m^2+6m+9-4m\\ =m^2+2m+9\\ =\left(m+1\right)^2+8>0\forall m\)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.

b) Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m\end{matrix}\right.\)

Mà \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow\left(m+3\right)^2-2m=6\\ \Leftrightarrow m^2+6m+9-2m=6\\ \Leftrightarrow m^2+4m+3=0\\ \Leftrightarrow\left(m+1\right)\left(m+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy \(m\in\left\{-1;-3\right\}\) là các giá trị cần tìm.

5 tháng 8 2021

a, Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\)

                   \(=m^2+6m+9-4m\)

                   \(=m^2+2m+9\)

                   \(=m^2+2m+1+8\)

                   \(=\left(m+1\right)^2+8\)

Lại có:  \(\left(m+1\right)^2\ge0\forall m\Rightarrow\left(m+1\right)^2+8\ge8\forall m\)

Vậy phương trình luôn có 2 nghiêm phân biệt 

b, Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1+x_2=m\end{matrix}\right.\)

Theo bài ra:

 \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow\left(m+3\right)^2-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m-6=0\)

\(\Leftrightarrow m^2+4m+3=0\)

\(\Leftrightarrow m^2+m+3m+3=0\)

\(\Leftrightarrow\left(m^2+m\right)+\left(3m+3\right)=0\)

\(\Leftrightarrow m\left(m+1\right)+3\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\m+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy với m=-1 hoặc m=-3 thì phương trinh trên thỏa mãn hệ thức 

 

29 tháng 3 2018

thay m=2 vào ta được phương trình:

x2-3x-2=0 <bấm máy> 

* CM: delta=b2-4ac=(2m-1)2-4.1.(-m)= 4m2-4m+1+4m=4m2+1

ta thấy m2 >=0 <=> 4m2>=0 <=> 4m2+1>=1>0 <=> delta>0 Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.

* >=: lớn hơn hoặc bằng. <đề còn lại ghi k rõ nên mình k giúp được =))>

4 tháng 8 2017

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán