\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\) với m là tham số.

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2022

-ĐKXĐ: \(x\ne5\)

\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\)

\(\Leftrightarrow\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=\dfrac{2m\left(x-5\right)}{x-5}\)

\(\Rightarrow m^2x+x+1-2m^2=2mx-10m\)

\(\Leftrightarrow m^2x+x-2mx=2m^2-10m-1\)

\(\Leftrightarrow x\left(m^2-2m+1\right)=2m^2-10m-1\)

\(\Leftrightarrow x=\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\)

-Để phương trình có nghiệm duy nhất, đạt GT duy nhất thì \(\left(m-1\right)^2\ne0\Leftrightarrow m\ne1\)

18 tháng 4 2022

-Sửa lại:

-ĐKXĐ: \(x\ne5\)

\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\)

\(\Leftrightarrow\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=\dfrac{2m\left(x-5\right)}{x-5}\)

\(\Rightarrow m^2x+x+1-2m^2=2mx-10m\)

\(\Leftrightarrow m^2x+x-2mx=2m^2-10m-1\)

\(\Leftrightarrow x\left(m^2-2m+1\right)=2m^2-10m-1\)

\(\Leftrightarrow x=\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\)

-Để phương trình có nghiệm duy nhất, đạt GT duy nhất thì \(\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\ne5\Leftrightarrow\dfrac{2m^2-10m-1}{m^2-2m+1}\ne5\Leftrightarrow\dfrac{2m^2-10m-1}{m^2-2m+1}\ne\dfrac{5m^2-10m+5}{m^2-2m+1}\Leftrightarrow2m^2-10m-1\ne5m^2-10m+5\Leftrightarrow3m^2+6\ne0\)(luôn đúng)

-Vậy với \(m\in R\) thì pt có nghiệm duy nhất.

21 tháng 8 2020

ĐKXĐ : \(x\ne5;2m\)

\(\frac{x+2m}{x-5}-1=\frac{x+5}{2m-x}+1\)

\(\Leftrightarrow\frac{x+2m-x+5}{x-5}=\frac{x+5+2m-x}{2m-x}\)

\(\Leftrightarrow\frac{2m+5}{x-5}=\frac{5+2m}{2m-x}\Leftrightarrow\frac{\left(2m+5\right)\left(2m-x\right)}{\left(x-5\right)\left(2m-x\right)}=\frac{\left(5+2m\right)\left(x-5\right)}{\left(x-5\right)\left(2m-x\right)}\)

\(\Leftrightarrow4m^2-2mx+10m-5x=5x-25+2mx-10m\)

\(\Leftrightarrow4m^2-4mx+20m-10x+25=0\)

11 tháng 2 2020

Thay x = 4 vào phương trình, ta được :

\(1-m=2\left(2m+1\right)\left(m-1\right)\)

\(\Leftrightarrow2\left(2m+1\right)\left(m-1\right)+\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(4m+2+1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(4m+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m-1=0\\4m+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{-3}{4}\end{cases}}\)

19 tháng 7 2021

Đk: \(x\ne m,x\ne2,x\ne2m\)

Ta có: \(\frac{3}{x-m}-\frac{1}{x-2}=\frac{2}{x-2m}\)

=> \(3\left(x-2\right)\left(x-2m\right)-\left(x-m\right)\left(x-2m\right)=2\left(x-m\right)\left(x-2\right)\)

<=> \(3\left(x^2-2mx-2x+4m\right)-x^2+2mx+mx-2m^2=2\left(x^2-2x-mx+2m\right)\)

<=> \(3x^2-6mx-6x+12m-x^2+2mx+mx-2m^2-2x^2+4x+2mx-4m=0\)

<=> \(-2x-mx+8m-2m^2=0\)

<=> \(x\left(m+2\right)=8m-2m^2\)

Để pt có nghiệm duy nhất <=> m + 2 khác 0 <=> m khác -2

4 tháng 2 2019

\(\frac{2m-1}{x-1}=m-2\)

\(\Leftrightarrow2m-1=\left(m-2\right)\left(x-1\right)\)

\(\Leftrightarrow2m-1=mx-m-2x+2\)

\(\Leftrightarrow2m+m-1-2=mx-2x\)

\(\Leftrightarrow3m-3=x\left(m-2\right)\)

\(\Leftrightarrow3\left(m-1\right)=x\left(m-2\right)\)

Với m=2

=>3.1=x.0(loại)=>pt vô nghiệm

Vậy m khác 2

\(\Rightarrow x=\frac{3\left(m-1\right)}{m-2}\)

Vậy với m khác 2 pt có nghiệm duy nhất là \(S=\left\{\frac{3\left(m-1\right)}{m-2}\right\}\)