Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
2.
\(\left|cosx-sinx\right|+2sin2x=1\)
\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)
\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)
\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)
1: =>sin^2(3x)=0
=>sin 3x=0
=>3x=kpi
=>x=kpi/3
2:
\(sinx=1-cos^2x=sin^2x\)
=>\(sin^2x-sinx=0\)
=>sin x(sin x-1)=0
=>sin x=0 hoặc sin x=1
=>x=pi/2+k2pi hoặc x=kpi
4:
sin 2x+sin x=0
=>sin 2x=-sin x=sin(-x)
=>2x=-x+k2pi hoặc 2x=pi+x+k2pi
=>x=pi+k2pi hoặc x=k2pi/3
5: =>cos(x+pi/3)=1/căn 2
=>x+pi/3=pi/4+k2pi hoặc x+pi/3=-pi/4+k2pi
=>x=-pi/12+k2pi hoặc x=-7/12pi+k2pi
3.
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=cos3x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{2}-3x+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
\(sin^3x+cos^3x-sinx-cosx=cos2x\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x-sinx.cosx+cos^2x\right)-\left(sinx+cosx\right)-\left(cos^2x-sin^2x\right)\)\(=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)-\left(sinx+cosx\right)-\left(cosx+sinx\right)\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx-cosx-sinx.cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\sinx-cosx-sinx.cosx=0\left(2\right)\end{matrix}\right.\)
TH1: (1)\(\Leftrightarrow\sqrt{2}.sin\left(x+\dfrac{\pi}{4}\right)=0\)\(\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\left(k\in Z\right)\)
TH2: Đặt \(t=sinx-cosx\) ;\(t\in\left(-2;2\right)\)
\(\Rightarrow\dfrac{t^2-1}{2}=-sinx.cosx\)
Pt (2)\(\Rightarrow t+\dfrac{t^2-1}{2}=0\)\(\Leftrightarrow t^2+2t-1=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\left(tm\right)\\t=-1-\sqrt{2}\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow sinx-cosx=-1+\sqrt{2}\)\(\Leftrightarrow\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)=-\sqrt{2}+1\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{1-\sqrt{2}}{\sqrt{2}}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+arc.cos\dfrac{1-\sqrt{2}}{2}+k2\pi\\x=\dfrac{-\pi}{4}-arc.cos\dfrac{1-\sqrt{2}}{2}+k2\pi\end{matrix}\right.\)(\(k\in\)\(Z\))
Vậy...
a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)
b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx
⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x
⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x
⇔ 4sin2x + (sinx + cosx) . sin2x = 0
⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)
⇔ sin2x = 0
c, 2cos3x = sin3x
⇔ 2cos3x = 3sinx - 4sin3x
⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0
⇔ sin3x + 2cos3x - 3sinx.cos2x = 0
Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình
Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được :
tan3x + 2 - 3tanx = 0
⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)
d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x
⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1
⇔ cos2x - \(\sqrt{3}sin2x\) = 1
⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)
⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)
e, cos3x + sin3x = 2cos5x + 2sin5x
⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0
⇔ cos3x . (- cos2x) + sin3x . cos2x = 0
⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=4\left(sinx+cosx\right)\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)-4\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(-3-\frac{1}{2}sin2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx+sinx=0\\sin2x=-6\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow cosx=-sinx=cos\left(\frac{\pi}{2}+x\right)\)
\(\Rightarrow x=-\frac{\pi}{2}-x+k2\pi\)
\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)
\(0\le-\frac{\pi}{4}+k\pi\le\pi\Rightarrow k=1\)
\(\Rightarrow x=\frac{3\pi}{4}\)
a, \(cos\left(x-\dfrac{\pi}{3}\right)-sin\left(x-\dfrac{\pi}{3}\right)=1\)
\(\Leftrightarrow\sqrt{2}cos\left(x-\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=1\)
\(\Leftrightarrow cos\left(x-\dfrac{7\pi}{12}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow x-\dfrac{7\pi}{12}=\pm\dfrac{\pi}{4}+k2\pi\)
...
b, \(\sqrt{3}sin2x+2cos^2x=2sinx+1\)
\(\Leftrightarrow\sqrt{3}sin2x+2cos^2x-1=2sinx\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x+\dfrac{1}{2}cos2x=sinx\)
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=x+k2\pi\\2x+\dfrac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
ĐKXĐ: x≠ \(k.\dfrac{\pi}{4}\) với k ∈ Z
Pt đã cho tương đương
\(\left\{{}\begin{matrix}sin4x.sin2x+sin4x.cosx=sin2x.cosx\\x\ne k\dfrac{\pi}{4}\end{matrix}\right.\)
Do x≠ \(k.\dfrac{\pi}{4}\) với k ∈ Z nên sin2x ≠ 0, chia cả 2 vế cho sin2x ta được
sin4x + 2cos2x.cosx = cosx
⇔ sin4x = cosx (1 - 2cos2x)
⇔ 4sinx.cosx.cos2x = cosx (1 - 2cos2x)
Do x≠ \(k.\dfrac{\pi}{4}\) với k ∈ Z nên cosx ≠ 0, chia cả 2 vế cho cosx ta được
4sinx.cos2x = 1 - 2cos2x
⇔ 4.sinx(1 - 2sin2x) = 1 - 2. (1- 2sin2x)
Đến đây tự giải kết hợp điều kiện nhé
\(cos^3x+sin^3x=sin2x+sinx+cosx\\ \Leftrightarrow\left(sinx+cosx\right)\left(1-\dfrac{sin2x}{2}\right)=sin2x+sinx+cosx\\ \Leftrightarrow-\dfrac{1}{2}sin2x\left(sinx+cosx+2\right)=0\\ \)
Mà \(sinx+cosx=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)>-2\)
\(\Rightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\left(k\in Z\right)\)
Tổng các nghiệm của phương trình trong \(\left[0;2018\pi\right]\) là:
\(S=\dfrac{\left(0+2018\pi\right)\left(\dfrac{2018\pi-0}{\dfrac{\pi}{2}}+1\right)}{2}=4073333\pi\)