\(x^2-\left(2m-1\right)x+m^2-1=0\)(tham số m)
...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 5 2019

Lời giải:

1.

Để pt có 2 nghiệm phân biệt thì:

\(\Delta=(2m-1)^2-4(m^2-1)=5-4m>0\)

\(\Leftrightarrow m< \frac{5}{4}\)

2.

Với \(m< \frac{5}{4}\), áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2m-1\\ x_1x_2=m^2-1\end{matrix}\right.\)

Khi đó:

\((x_1-x_2)^2=x_1-3x_2\)

\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1+x_2)-4x_2\)

\(\Leftrightarrow (2m-1)^2-4(m^2-1)=2m-1-4x_2\)

\(\Leftrightarrow 5-4m=2m-1-4x_2\)

\(\Leftrightarrow x_2=\frac{3-3m}{2}\)

\(\Rightarrow x_1=2m-1-x_2=\frac{7m-5}{2}\)

\(\Rightarrow x_1x_2=\frac{(3-3m)(7m-5)}{4}=m^2-1\)

\(\Rightarrow \left[\begin{matrix} m=\frac{11}{25}\\ m=1\end{matrix}\right.\) (giải pt bậc 2 đơn giản)

Thử lại thấy thỏa mãn. Vậy..........

\(\Rightarrow \)

25 tháng 1 2016

dùng vi ét đc k bạn 

25 tháng 1 2016

Tuấn đc

11 tháng 6 2020

dcv_new 

dcv - new

Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)

<=> x = 3 hoặc x = -2 

Vậy m = -1 và x2 = - 2

11 tháng 6 2020

a, Thay \(x_1=3\)vào phương trình , khi đó :

\(pt< =>\)\(3^2+3m+2m-4=0\)

\(< =>5m+5=0\)

\(< =>m=-\frac{5}{5}=-1\)

Thay \(m=-1\)vào phương trình , khi đó :

\(pt< =>x^2-x+2=0\)

\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)

Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)

b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)

Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)

Bạn thiếu đề rồi thì phải !

7 tháng 1 2016

giải  pt tìm  x1 ; x 2 theo m

sau đó giải BPT tìm m  thối.x1>1 và x2 < 6

7 tháng 1 2016

denta= (2m-3)^2 -4(m^2-3m)=9>0 => pt luôn có 2 nghiệm phân biệt với mọi x 
*x1=[2m-3+9]/2=m+3 
*x2=[2m-3-9]/2=m-6 
Theo bài ra ta có: hai nghiệm x1, x2 cùng dương <=> P>0 và S>0 
=> m>3 thì hai nghiệm x1, x2 luôn cùng dương.

30 tháng 1 2016

+b2 - 4ac > 0

+x1 - x2 = 5 

+ x12 - x23 =5[(x1-x2)2 -3x1x2] =35 => 25 - 3 x1x2 =7 => - x1.x2 = -6

=> x1 ; - x2 là nghiệm của pt : X2 -5X - 6 =0 => X1 =-1 ; -X2 = 6 hoặc x1 = 6 ; -x2 =-1

+ x1 = -1 ; x2 =-6 => a = 7 ; b = 6

+ x1 =6 ; x2 = 1 => a =-7 ; b = 6

30 tháng 1 2016

sai đề bài rùi kìa phải là ax mà

29 tháng 1 2016

CÁI BÀI NÀY CÂU HỎI LÀ LÀM GÌ VẬY ĐỌC KO HỈU LẮM

29 tháng 1 2016

phantuananh mk cũng bị cái câu hỏi làm cho @@ ùi

29 tháng 1 2019

giúp vs ạ

29 tháng 1 2019

a, Vì pt trên nhận \(4+\sqrt{2019}\) là nghiệm nên

\(\left(4+\sqrt{2019}\right)^2-\left(2m+2\right)\left(4+\sqrt{2019}\right)+m^2+2m=0\)

\(\Leftrightarrow2035+8\sqrt{2019}-2m\left(4+\sqrt{2019}\right)-8-2\sqrt{2019}+m^2+2m=0\)

\(\Leftrightarrow m^2-2m\left(3+\sqrt{2019}\right)+6\sqrt{2019}+2027=0\)

Có \(\Delta'=\left(3+\sqrt{2019}\right)^2-6\sqrt{2019}-2027=1>0\)

Nên pt có 2 nghiệm \(m=\frac{3+\sqrt{2019}-1}{1}=2+\sqrt{2019}\)

                   hoặc \(m=\frac{3+\sqrt{2019}+1}{1}=4+\sqrt{2019}\)

b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)

Theo đề \(x_1-x_2=m^2+2\left(3\right)\)

Lấy (1) + (3) theo từng vế được 

\(2x_1=m^2+2m+5\)

\(\Rightarrow x_1=\frac{m^2+2m+5}{2}\)

\(\Rightarrow x_2=2m+2-x_1=...=-\frac{\left(m-1\right)^2}{2}\)

Thay vào (2) được \(\frac{m^2+2m+5}{2}.\frac{-\left(m-1\right)^2}{2}=m^2+2m\)

                \(\Leftrightarrow-\left(m^2+2m+5\right)\left(m-1\right)^2=4m^2+8m\)

hmmm

10 tháng 3 2018

a)cho m=0 =>x tự làm theo ct nhe 
B) pt co 2 n <=> delta=1-(m-1)>0 <=>m<2 
c)viet x1^2+x2^2=(x1+x2)^2-2x1x2 
=2^2-2(m-1)=10 =>m=-2

10 tháng 3 2018

yheem đap an đi

25 tháng 5 2016

Bảo Ngọc tính nghiệm bị sai!

25 tháng 5 2016

a) Ta xét : 

\(\Delta'=\left(m-2\right)^2+2m=m^2-2m+4=\left(m-1\right)^2+3\ge3>0\)

Vì \(\Delta'>0\)nên phương trình trên luôn có hai nghiệm phân biệt.

b) Dễ thấy : x1<x2 nên ta có : 

\(x_1=\frac{2\left(m-2\right)-\sqrt{\left(m-1\right)^2+3}}{2}=m-2-\sqrt{\left(m-1\right)^2+3}\) ; \(x_2=\frac{2\left(m-2\right)+\sqrt{\left(m-1\right)^2+3}}{2}=m-2+\sqrt{\left(m-1\right)^2+3}\)

\(x_2-x_1=x_1^2\Leftrightarrow2\sqrt{\left(m-1\right)^2+3}=\left(m-2-\sqrt{\left(m-1\right)^2+3}\right)^2\)

\(\Leftrightarrow\left(m-2\right)^2+\left(m-1\right)^2+3-2\left(m-2\right)\sqrt{\left(m-1\right)^2+3}=2\sqrt{\left(m-1\right)^2+3}\)

\(\Leftrightarrow m=2\)

Vậy m = 2