K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

Theo hệ thức vi-ét ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\times x_2=m^2-m+1\end{matrix}\right.\)

\(\Rightarrow A=m^2-m+1-2m\)

\(=m^2-3m+1\)

\(=\left(m^2-3m+\dfrac{9}{4}\right)-\dfrac{5}{4}\)

\(=\left(m-\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\)

Vậy GTNN của \(A=-\dfrac{5}{4}\) khi \(m=\dfrac{3}{2}\)

15 tháng 4 2018

cảm ơn bạn mình có bài kiểm tra 1 tiết có câu này

25 tháng 11 2019

b) Theo định lí Vi-et ta có:

x 1  + x 2 = m + 1 và x 1 . x 2  = m - 2

Do đó A =  x 1 2 + x 2 2 - 6 x 1 x 2  = x 1 + x 2 2 - 8 x 1 x 2

= m + 1 2 - 8(m – 2) = m 2  + 2m + 1 – 8m + 16

= m 2 - 6m + 17 = m - 3 2  + 8 ≥ 8

Vậy giá trị nhỏ nhất của A bẳng 8 khi m – 3 = 0 hay m = 3.

2 tháng 12 2019

a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1                                              

b) Phương trình (1) có hai nghiệm  x 1 , x 2  khi và chỉ khi  Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2

Theo Vi-et , ta có:  x 1 + x 2 = m          1 x 1 . x 2 = m 2 − 2 2    2

Theo đề bài ta có:  A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2

Do  − 2 ≤ m ≤ 2  nên  m + 2 ≥ 0 m − 3 ≤ 0 . Suy ra  A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4

Vậy  MaxA = 25 4  khi  m = 1 2 .

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

Đề thiếu rồi bạn

13 tháng 1 2022

\(a,\Delta'=\left(-m\right)^2-\left(4m-5\right)=m^2-4m+5=\left(m^2-4m+4\right)+1=\left(m-2\right)^2+1>0\)

Vậy pt luôn có 2 nghiệm phân biệt với mọi m

câu b thiếu

23 tháng 2 2022

a, \(\Delta'=\left(-m\right)^2-1\left(-1\right)=m^2+1>0\)

Vậy phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2

b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-1\end{matrix}\right.\)

\(x^2_1+x^2_2-x_1x_2=7\\ \Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\\ \Leftrightarrow\left(2m\right)^2-3\left(-1\right)=7\\ \Leftrightarrow4m^2+3=7\\ \Leftrightarrow4m^2=4\\ \Leftrightarrow m^2=1\\ \Leftrightarrow m=\pm1\)

23 tháng 2 2022

a, Thay m=0 vào pt ta có:

\(x^2-x+1=0\)

\(\Rightarrow\) pt vô nghiệm 

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

16 tháng 6 2021

x23 hay x22?

16 tháng 6 2021

mũ 3 bọn ạ đề của bọn mình ghi vậy 

23 tháng 5 2022

Ptr có nghiệm `<=>\Delta' >= 0`

                       `<=>[-(m+1)]^2-(m^2+4) >= 0`

                       `<=>m^2+2m+1-m^2-4 >= 0`

                       `<=>m >= 3/2`

Với `m >= 3/2`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=m^2+4):}`

Ta có:`C=x_1+x_2-x_1.x_2+3`

`<=>C=2m+2-m^2-4+3`

`<=>C=-m^2+2m+1`

`<=>C=-(m^2-2m+1)+2`

`<=>C=-(m-1)^2+2`

 Vì `-(m-1)^2 <= 0 AA m >= 3/2`

`<=>-(m-1)^2+2 <= 2 AA m >= 3/2`

Dấu "`=`" xảy ra`<=>(m-1)^2=0<=>m=1` (ko t/m)

Vậy không tồn tại `m` để `C` có `GTLN`

7 tháng 4 2018

Phương trình x 2 + (4m + 1)x + 2(m – 4) = 0 có a = 1  0 và

∆ = ( 4 m + 1 ) 2 – 8 ( m – 4 ) = 16 m 2 + 33 > 0 ;   ∀ m

Nên phương trình luôn có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  x 1 + x 2 = − 4 m − 1 x 1 . x 2 = 2 n − 8

Xét

A = x 1 - x 2 2 = x 1 + x 2 2 - 4 x 1 x 2 = 16 m 2 + 33 ≥ 33

Dấu “=” xảy ra khi m = 0

Vậy m = 0 là giá trị cần tìm

Đáp án: B