K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2020

[m=338m=−2

Giải thích các bước giải:

Để phương trình 2x2+(2m−1)x+m−1=02x2+(2m−1)x+m−1=0 có 2 nghiệm phân biệt thì:

⇔Δ>0⇔(2m−1)2−4.2.(m−1)>0⇔4m2−4m+1−8m+8>0⇔4m2−12m+9>0⇔(2m−3)2>0⇔m≠32⇔Δ>0⇔(2m−1)2−4.2.(m−1)>0⇔4m2−4m+1−8m+8>0⇔4m2−12m+9>0⇔(2m−3)2>0⇔m≠32

Theo định lý Vi-et: {x1+x2=1−2m2x1.x2=m−12{x1+x2=1−2m2x1.x2=m−12

Lại có: 3x1−4x2=113x1−4x2=11 (giả thiết)

Ta có hệ: 

{3x1−4x2=11x1+x2=1−2m2⇔{3x1−4x2=114x1+4x2=2(1−2m)⇔{7x1=13−4mx1+x2=1−2m2⇔{x1=13−4m7x2=−1914−3m7{3x1−4x2=11x1+x2=1−2m2⇔{3x1−4x2=114x1+4x2=2(1−2m)⇔{7x1=13−4mx1+x2=1−2m2⇔{x1=13−4m7x2=−1914−3m7

Vì x1x2=m−12x1x2=m−12 nên 13−4m7.(−1914−3m7)=m−1213−4m7.(−1914−3m7)=m−12

[m=338m=−2[m=338m=−2
 

(thỏa mãn điều kiện xác định)

Vậy với m=−2m=−2 và m=338m=338 thì phư

19 tháng 5 2020

Để pt có 2 nghiệm phân biệt \(x_1;x_2\)thì \(\Delta>0\)

\(\Leftrightarrow\left(2m-1\right)^2-4\cdot2\left(m-1\right)>0\)

\(\Rightarrow m\ne15\left(1\right)\)

Mặt khác theo Vi-et và giả thiết ta có:

\(\hept{\begin{cases}x_1+x_2=-\frac{2m-1}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)và \(3x_1-4x_2=11\)

\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_1=\frac{7m-7}{26-8m}\end{cases}}\)và \(3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\)

Giải pt \(3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\)ta được \(\hept{\begin{cases}m=-2\\m=4,125\end{cases}\left(2\right)}\)

ĐK (1) và (2) ta có: Với m=-2 hoặc m=4,125 thì pt có 2 nghiệm phân biệt thỏa mãn 3x1-4x2=11

10 tháng 4 2021

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)

1 tháng 4 2021

a, Thay m vào pt ta được :

(3+1).x2-2(3+1).x+3-3=0

\(\Leftrightarrow\)4x2-8x=0

\(\Leftrightarrow4x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy m=3 phương trình có 2 nghiệm là 0 và 2

b, Theo Vi et ta có :

\(\left\{{}\begin{matrix}x_1.x_2=\dfrac{m-3}{m+1}\\x_1+x_2=\dfrac{2\left(m+1\right)}{m+1}\end{matrix}\right.\left(vớim\ne-1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1.x_2=\dfrac{m-3}{m+1}\\x_1+x_2=2\end{matrix}\right.\)  (1)

Ta có : (4x1+1)(4x2+1)=18

\(\Leftrightarrow16x_1.x_2+4x_1+4x_2+1=18\)

\(\Leftrightarrow16.x_1.x_2+4\left(x_1+x_2\right)=17\)  (2)

Thay (1) vào (2) ta được : 

         16.\(\dfrac{m-3}{m+1}+4.2=17\)

\(\Leftrightarrow\dfrac{16m-48}{m+1}=9\)

\(\Leftrightarrow9\left(m+1\right)=16m-48\)

\(\Leftrightarrow9m+9=16m-48\)

\(\Leftrightarrow7m=57\)

\(\Leftrightarrow m=\dfrac{57}{7}\) (thỏa mãn m\(\ne-1\))

Vậy ..

25 tháng 2 2022

Ta có:\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.m=4m^2+4m+1-4m=4m^2+1>0\)

\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt

4 tháng 6 2021

\(2x^2+\left(2m-1\right)x+m-1=0\)

Thay m=2 vào phương trình ta có

\(2x^2+\left(4-1\right)x+2-1=0\)

\(\Leftrightarrow2x^2+3x+1=0\)

\(\Delta=3^2-4.2.1\)

\(=9-8\)

\(=1>0\Rightarrow\sqrt{\Delta}=1\)

\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{-3-1}{4}=-1\)                          \(x_2=\dfrac{-3+1}{4}=\dfrac{-1}{2}\)

Vậy phương trình có 2 nghiệm là \(x_1=-1;x_2=\dfrac{-1}{2}\)khi m=2

b,\(4x_1^2+2x_1x_2+4x_2^2=1\)

\(\Leftrightarrow4\left(x_1^2+x_2^2\right)+2x_1x_2=1\)

\(\Leftrightarrow4\left(x_1+x_2\right)=1\)

\(\Leftrightarrow4.\left(2m-1\right)^2=1\)

\(\Leftrightarrow2m-1=\dfrac{1}{2}\)

\(\Leftrightarrow2m=\dfrac{3}{2}\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

-Chúc bạn học tốt-

17 tháng 5 2022

\(\Delta=\left[-2\left(m-1\right)\right]^2-4.\left(-2\right)\)

   \(=4m^2-8m+8+8\)

   \(=4m^2-8m+16\)

   \(=3m^2+\left(m-4\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)

                                                  \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>4\end{matrix}\right.\) \(\rightarrow m>4\)

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\left(1\right)\\x_1x_2=-2\end{matrix}\right.\)

\(A=x_1^2+4x_2^2\)

\(A=x_1^2+\left(2x_2\right)^2\)

\(\Rightarrow Min_A=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=0\\x_2=0\end{matrix}\right.\)

Thế vào (1) ta được: \(0=2m-2\)

                                \(\Leftrightarrow m=1\)

 

d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)

\(=m^2+2m+1-8m-24\)

\(=m^2-6m-23\)

\(=m^2-6m+9-32\)

\(=\left(m-3\right)^2-32\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)

Ta có: \(x_1x_2=\dfrac{m+3}{2}\)

\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)

\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)

21 tháng 8 2021

cậu có thể giúp mình cả bài được không,cảm ơn cậu

30 tháng 7 2021

undefined

undefined

b) Thay x=2 vào pt, ta được:

\(4\left(m^2-1\right)-4m+m^2+m+4=0\)

\(\Leftrightarrow4m^2-4-4m+m^2+m+4=0\)

\(\Leftrightarrow5m^2-3m=0\)

\(\Leftrightarrow m\left(5m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{5}\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=\dfrac{2m}{m^2-1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2+2=0\\x_2+2=\dfrac{6}{5}:\left(\dfrac{36}{25}-1\right)=\dfrac{30}{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=-2\\x_2=\dfrac{8}{11}\end{matrix}\right.\)

a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)

\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)

=>4m=-13

hay m=-13/4

c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)

=>-8m>=-4

hay m<=1/2