Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x = 3 là nghiệm của phương trình, ta có:
3^3 - 3^2 - 9.3 - 9m = 0
<=> 27 - 9 - 27 - 9m = 0
<=> -9 - 9m = 0
<=> -9m = 0 + 9
<=> -9m = 9
<=> m = -1
a:
Thay x=2 vào (1), ta được:
\(2^2-5\cdot2+6=0\)(đúng)
Thay x=2 vào (2), ta được:
\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)
b: (1)=>(x-2)(x-3)=0
=>S1={2;3}
(2)=>\(x+2x^2+x-4x-2-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>S2={-2;1}
vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)
Tại x = 2 ta có:
Vế trái = 2(2 + 2) – 7 = 2.4 – 7 = 8 – 7 = 1
Vế phải = 3 – x = 3 – 2 = 1
⇒ vế trái = vế phải = 1 nên x = 2 có là một nghiệm của phương trình
a) Thay x = 2 vào bất phương trình ta được: x2 = 22 = 4 > 0
Vậy x = 2 là một nghiệm của bất phương trình x2 > 0.
Thay x = -3 vào bất phương trình ta được x2 = (-3)2 = 9 > 0
Vậy x = -3 là một nghiệm của bất phương trình x2 > 0.
b) Với x = 0 ta có x2 = 02 = 0
⇒ x = 0 không phải nghiệm của bất phương trình x2 > 0.
Vậy không phải mọi giá trị của ẩn x đều là nghiệm của bất phương trình đã cho.
Xét phương trình |x – 3| = 1
TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3
Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)
TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3
Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)
Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4 hay (1) sai và (3) đúng
|x – 1| = 0 ó x – 1 = 0 ó x = 1 nên phương trình |x – 1| = 0 có nghiệm duy nhất hay (2) sai.
Vậy có 1 khẳng định đúng
Đáp án cần chọn là: B
a) Ta có: 2² = 4 > 0 và (-3)² = 9 > 0 => x = 2; x = -3 là nghiệm của bất phương trình x² > 0
b) Ta có Với mọi x ≠ 0 thì x² > 0 và khi x = 0 thì 0² = 0 nên mọi giá trị của ẩn x không là nghiệm của bất phương trình x² > 0. tập nghiệm của bất phương trình x² > 0 là S = {x ∈ R/x ≠ 0}
= R\{0}
a. để phương trình nhận x=3 là nghiệm ta có
\(a\left(3+2\right)-a^2-2=0\Leftrightarrow a^2-5a+2=0\Leftrightarrow a=\frac{5\pm\sqrt{17}}{2}\)
b. Để phương trình có duy nhất 1 nghiệm âm ta có :
\(\hept{\begin{cases}a\ne0\\x=\frac{a^2-2a+2}{a}< 0\end{cases}\Leftrightarrow a< 0}\) do \(a^2-2a+2>0\forall a\)
c. Để phương trình đã cho vô nghiệm thì a=0
d. Phương trình đã cho không thể có vô số nghiệm thực.
Với x = 0 thì
VT = 2(0 + 3) – 3 = 2.3 – 3 = 6 – 3 = 3
Ta có: VP = 3 – x = 3 – 0 = 3 = VT
⇒ x = 0 có là một nghiệm của phương trình
Vậy x = 0 là nghiệm của phương trình.