Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m_{CaO\left(lt\right)}=\dfrac{94,08}{80\%}\cdot100\%=117,6kg\\ CaCO_3\xrightarrow[]{t^0}CaO+CO_2\\ \Rightarrow\dfrac{m_{CaCO_3}}{100}=\dfrac{117,6}{56}\\ \Rightarrow m_{CaCO_3}=210kg\\ \%m_{CaCO_3\left(trong.đá.vôi\right)}=\dfrac{210}{280}\cdot100\%=75\%\)
PT: \(CaCO_3\underrightarrow{t^o}CaO+CO_2\)
Ta có: \(n_{CaO}=\dfrac{94,08}{56}=1,68\left(kmol\right)\)
Theo PT: \(n_{CaCO_3\left(LT\right)}=n_{CaO}=1,68\left(kmol\right)\)
Mà: H = 80%
\(\Rightarrow n_{CaCO_3\left(TT\right)}=\dfrac{1,68}{80\%}=2,1\left(mol\right)\)
\(\Rightarrow m_{CaCO_3\left(TT\right)}=2,1.100=210\left(kg\right)\)
\(\Rightarrow\%CaCO_3=\dfrac{210}{280}.100\%=75\%\)
\(m_{CaCO_3}=m_{CaO}+m_{CO_2}=250\left(kg\right)\\ \%m_{\dfrac{CaCO_3}{\text{đ}\text{á}.v\text{ô}i}}=\dfrac{250}{280}.100\approx89,3\%\)
Bài 3 :
$n_{CaO} = \dfrac{168}{56} = 3(kmol)$
$CaCO_3 \xrightarrow{t^o} CaO + CO_2$
$n_{CaCO_3\ pư} = n_{CaO} = 3(kmol)$
$n_{CaCO_3\ đã\ dùng} = \dfrac{3}{80\%} = 3,75(kmol)$
$m_{CaCO_3} = 3,75.100 = 375(kg)$
$m = \dfrac{375}{80\%} = 468,75(kg)$
Bài 2 :
\(m_{CaCO_3}=280\cdot75\%=210\left(kg\right)\)
\(n_{CaCO_3\left(pư\right)}=\dfrac{210}{100}\cdot80\%=1.68\left(kmol\right)\)
\(CaCO_3\underrightarrow{^{^{t^0}}}CaO+CO_2\)
\(1.68.........1.68......1.68\)
\(m_{CaO}=1.68\cdot56=94.08\left(kg\right)\)
\(V_{CO_2}=1.68\cdot22.4=37.632\left(l\right)=0.037632\left(m^3\right)\)
\(m_{CaCO_3}=90\%\cdot1000=900\left(kg\right)\)
\(n_{CaCO_3}=\dfrac{900}{100}=9\left(kmol\right)\)
\(CaCO_3\underrightarrow{^{^{t^0}}}CaO+CO_2\)
\(9...............9\)
\(m_{CaO}=9\cdot56=504\left(kg\right)=0.504\left(tấn\right)\)
\(H\%=\dfrac{0.45}{0.504}\cdot100\%=89.28\%\)
1)
$2C + O_2 \xrightarrow{t^o} 2CO$
$m_{C\ pư} = 490 - 49 = 441(kg)$
$H = \dfrac{441}{490}.100\% = 90\%$
2)
$m_{CaCO_3} = 1000.90\% = 900(kg)$
$CaCO_3 \xrightarrow{t^o} CaO + CO_2$
$n_{CaCO_3\ pư} = n_{CaO} = \dfrac{0,45}{56} = 0,008(kmol)$
$H = \dfrac{0,008.100}{900}.100\% = 0,09\%$
PTHH:
\(CaCO_3\underrightarrow{t^o}CaO+CO_2\)
b,
\(\%CaCO_3=\dfrac{2400}{3000}.100=80\%\)
\(n_{CaO}=\dfrac{560}{56}=10\left(kmol\right)\)
\(CaCO_3\xrightarrow[]{t^o}CaO+CO_2\)
\(n_{CaCO3}=n_{CaO}=10\left(kmol\right)\Rightarrow m_{CaCO3\left(lt\right)}=10.100=1000\left(g\right)\)
\(\Rightarrow m_{CaCO3\left(tt\right)}=\dfrac{1000}{80\%}=1250\left(kg\right)\)