K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

chưa họclolang

13 tháng 1 2016

ĐKXĐ : x2-5x khác 0

<=>x.(x-5) khác 0

<=> x khác 0 và x khác 5

a)

\(\frac{x^2-10x+25}{x^2-5x}=0\Rightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\)

<=>x-5=0

<=>x=5

Mà x khác 5 nên không có x nào thỏa mãn phân thức bằng 0

b)\(\frac{x^2-10x+25}{x^2-5x}=\frac{5}{2}\Leftrightarrow\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{5}{2}\Leftrightarrow\frac{x-5}{x}=\frac{5}{2}\Leftrightarrow\frac{2.\left(x-5\right)}{2x}=\frac{5x}{2x}\)

\(\Rightarrow2\left(x-5\right)=5x\Leftrightarrow2x-10=5x\Leftrightarrow-3x=10\Leftrightarrow x=-\frac{10}{3}\)

c) \(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x.\left(x-5\right)}=\frac{x-5}{x}=1-\frac{5}{x}\)

Để phân thức trên nguyên thì : 1-5/x là số nguyên

=>5/x là số nguyên

=>x thuộc Ư(5)={1;-1;5;-5}

Mà x khác 5 nên: x={1;-1;-5}

Vậy x={1;-1;-5}

16 tháng 12 2019

a

\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)

b

\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)

\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)

\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)

\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)

c

Với \(x=4\Rightarrow A=-3\)

d

Để A nguyên thì \(\frac{3}{x-3}\) nguyên

\(\Rightarrow3⋮x-3\)

 Làm nốt.

16 tháng 12 2019

toi moi lop 5

21 tháng 12 2019

a) Giá trị của phân thức được xác định 

\(\Leftrightarrow x^2-1\ne0\)

\(\Leftrightarrow x\ne\pm1\)

Vậy để giá trị của phân thức đã cho xác định \(\Leftrightarrow x\ne\pm1\)

b)Ta có: 

 \(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{3}{x-1}\)

c) Để phân thức nhận giá trị nguyên dương

\(\Leftrightarrow\frac{3}{x-1}\)có giá trị nguyên dương 

\(\Leftrightarrow x-1\)\(\inƯ\left(3\right)=\left\{1;3\right\}\)

x-113
x2 ( Nhận )4 ( Nhận )

Vậy với \(x\in\left\{2;4\right\}\)thì giá trị của phân thức có giá trị nguyên dương.

22 tháng 12 2018

Bài 3 :

a) Phân thức xác định \(\Leftrightarrow x^2-1\ne0\Leftrightarrow\left(x-1\right)\left(x+1\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}}\)

Ta có : 

\(A=\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{3}{x-1}\)

Để A có giá trị bằng -2 thì \(\frac{3}{x-1}=-2\)

\(\Leftrightarrow3=-2x+2\)

\(\Leftrightarrow-2x=1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

b) Để A là số nguyên thì :

\(3⋮x-1\)

\(\Rightarrow x-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

\(\Rightarrow x\in\left\{2;4;0;-2\right\}\)( thỏa mãn ĐKXĐ )

Vậy...........

22 tháng 12 2018

\(a,ĐKXĐ:x\ne\pm1\)

Ta có : \(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{3}{x-1}\)

\(\Rightarrow\frac{3x+3}{x^2-1}=-2\Leftrightarrow\frac{3}{x-1}=-2\)

                                 \(\Leftrightarrow-2\left(x-1\right)=3\)

                                 \(\Leftrightarrow-2x+2=3\)

                                 \(\Leftrightarrow-2x=1\)

                                 \(\Leftrightarrow x=\frac{-1}{2}\)

\(b,\) Để phân thức \(\frac{3x+3}{x^2-1}\) có giá trị nguyên thì \(\frac{3}{x-1}\) có giá trị nguyên

                \(\Rightarrow3⋮x-1\)

                \(\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

                \(\Rightarrow x\in\left\{0;2;-2;4\right\}\)

Vậy \(x=-2;0;2;4\)

15 tháng 12 2019

\(a,\)\(đkxđ\Leftrightarrow\)\(\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}}\)\(\Rightarrow x\ne\pm3\)

\(b,\)\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)

\(=\frac{5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{5x-15+3x+9-5x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)

\(c,\)Tại x = 6, ta có :

\(B=\frac{3}{x+3}=\frac{3}{6+3}=\frac{3}{9}=\frac{1}{3}\)

Vậy tại x = 6 thì B = 3 

\(d,\)Để \(B\in Z\Rightarrow\frac{3}{x+3}\in Z\Rightarrow x+3\inƯ_3\)

Mà \(Ư_3=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)TH1 : \(x+3=1\Rightarrow x=-2\)

Th2: \(x+3=-1\Rightarrow x=-4\)

Th3 : \(x+3=3\Rightarrow x=0\)

TH4 \(x+3=-3\Rightarrow x=-6\)

Vậy để \(B\in Z\)thì \(x\in\left\{-6;-4;-2;0\right\}\)

15 tháng 12 2019

a)Để B đc xác định thì :x+3 khác 0

                                     x-3 khác 0

                                     x^2-9 khác 0

=>x khác -3

    x khác 3

b) Kết Qủa BT B là:3/x+3