K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2020

M = \(\dfrac{12}{x^2-4x+6}\) đạt giá trị lớn nhất khi x2 - 4x + 6 đạt giá trị nhỏ nhất

Ta có:

x2 - 4x + 6 = x2 - 4x + 4 + 2 = (x - 2)2 + 2

Do (x - 2)2 \(\ge\) 0

\(\Rightarrow\) (x - 2)2 + 2 \(\ge\) 2

\(\Rightarrow\) x2 - 4x + 6 đạt giá trị nhỏ nhất là 2 khi x = 2

Với x = 2, ta có:

M = \(\dfrac{12}{2}=6\)

Vậy giá trị lớn nhất của M là 6 khi x = 2