K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

a, Rút gọn :

\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x-10}{\left(x+5\right)\left(x-5\right)}\)

\(A=\frac{1\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}-\frac{2x-10}{\left(x+5\right)\left(x-5\right)}\)

\(A=\frac{x-5+2x+10-2x+10}{\left(x+5\right)\left(x-5\right)}\)

\(A=\frac{x+15}{\left(x+5\right)\left(x-5\right)}\)

25 tháng 5 2017

   Đức Hiệp Tùng   Giúp tôi giải toán  FA Trả lời 3 Đánh dấu

3 phút trước (13:18)

Kb đi buồn quá

Toán lớp 1
26 tháng 5 2017

a.x=5

b.mk chưa hiểu ý đề bài,hjhj

20 tháng 4 2017

ĐKXĐ: x\(\ne\)1, x\(\ne\)-1

MTC (x-1)(x+1)

\(\Leftrightarrow\)(\(\frac{-\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)\(\frac{2\left(x-1\right)}{MTC}\)-\(\frac{-\left(5-x\right)}{MTC}\)) : \(\frac{1-2x}{MTC}\)

\(\Rightarrow\)\(\left[-\left(x+1\right)+2\left(x-1\right)+\left(5-x\right)\right]:\left(1-2x\right)\)

\(\Leftrightarrow\frac{-x-1+2x-2+5-x}{1-2x}\)

=\(\frac{-2x+2x+2}{1-2x}\)

=\(\frac{2}{1-2x}\)

b. mình chỉ biết  \(x< \frac{1}{2}\) thôi chứ ko biết làm sao

hình như là giải Bất phương trình \(\frac{2}{1-2x}>0\)

5 tháng 8 2017

\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)   ĐK đề bài

\(=\frac{x-5+2\left(x+5\right)-2x-10}{\left(x+5\right)\left(x-5\right)}=\frac{-\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}=-\frac{1}{x-5}\)

b/ có A=-3 => \(-\frac{1}{x-5}=-3 \Rightarrow x-5=\frac{1}{3}\Rightarrow x=\frac{16}{3}\)

có \(9x^2-42x+49=\left(3x-7\right)^2=\left(\frac{3.16}{3}-7\right)^2=81\)

29 tháng 3 2020

Bài 2 :

a, Ta có : \(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)

=> \(A=\frac{x-5}{\left(x+5\right)\left(x-5\right)}+\frac{2\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)

=> \(A=\frac{x-5+2\left(x+5\right)-2x-10}{\left(x-5\right)\left(x+5\right)}\)

=> \(A=\frac{x-5}{\left(x-5\right)\left(x+5\right)}=\frac{1}{x+5}\)

b, - Thay A = -3 ta được phương trình \(\frac{1}{x+5}=-3\)

=> \(-3\left(x+5\right)=1\)

=> \(-3x-15=1\)

=> \(-3x=16\)

=> \(x=-\frac{16}{3}\)

- Thay x = \(-\frac{16}{3}\)vào phương trình trên ta được :

\(9.\left(-\frac{16}{3}\right)^2-42.\left(-\frac{16}{3}\right)+49=529\)

26 tháng 7 2019

\(a)\dfrac{3}{{x + 5}} + \dfrac{2}{{x - 5}} - \dfrac{{2x + 10}}{{\left( {x + 5} \right)\left( {x - 5} \right)}} = \dfrac{3}{{x + 5}} + \dfrac{2}{{x - 5}} - \dfrac{{2x + 10}}{{\left( {x + 5} \right)\left( {x - 5} \right)}}\\ = \dfrac{3}{{x + 5}} + \dfrac{2}{{x - 5}} - \dfrac{{2\left( {x + 5} \right)}}{{\left( {x + 5} \right)\left( {x - 5} \right)}}\\ = \dfrac{3}{{x + 5}} + \dfrac{2}{{x - 5}} - \dfrac{2}{{x - 5}}\\ = \dfrac{3}{{x + 5}}\\ \)

ĐKXĐ: \(x\notin\left\{2;-2;-1\right\}\)

a) Ta có: \(A=\left(\dfrac{x}{x^2-4}-\dfrac{4}{2-x}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}+\dfrac{4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right):\dfrac{3\left(x+1\right)}{x\left(x+2\right)}\)

\(=\left(\dfrac{x+4x+8}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{5x+8+x-2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6x+6}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)}{x-2}\cdot\dfrac{x}{3\left(x+1\right)}\)

\(=\dfrac{2x}{x-2}\)

b) Để A nguyên thì \(2x⋮x-2\)

\(\Leftrightarrow2x-4+4⋮x-2\)

mà \(2x-4⋮x-2\)

nên \(4⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(4\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)

Kết hợp ĐKXĐ, ta được:

\(x\in\left\{0;1;3;4;6\right\}\)

Vậy: Khi \(x\in\left\{0;1;3;4;6\right\}\) thì A nguyên

31 tháng 10 2019

a) \(P=\left(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\right):\frac{2x+1}{x^2+2x+1}\)

\(=\left(\frac{1}{x-1}-\frac{x}{\left(1-x\right)\left(1+x+x^2\right)}.\frac{x^2+x+1}{x+1}\right).\frac{x^2+2x+1}{2x+1}\)

\(=\left(\frac{1}{x-1}-\frac{x}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2+2x+1}{2x+1}\)

\(=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2+2x+1}{2x+1}\)

\(=\frac{1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x+1\right)^2}{2x+1}\)

\(=\frac{x+1}{\left(x-1\right)\left(2x+1\right)}\)

31 tháng 10 2019

b) \(Q=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{5x-5x}{2x\left(x+5\right)}\)

\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+2x^2+2\left(x^2-25\right)+50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)

\(=\frac{x^3-x^2+5x^2-5x}{2x\left(x+5\right)}\)

\(=\frac{x^2\left(x-1\right)+5x\left(x-1\right)}{2x\left(x+5\right)}\)

\(=\frac{\left(x-1\right)\left(x^2+5x\right)}{2x\left(x+5\right)}\)

\(=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)

\(=\frac{x-1}{2}\)

31 tháng 10 2020

Bài làm

Như đã nhắn là mình sẽ làm theo quan điểm của mình là 5/(x^2 - 1) nha

\(A=\left[\frac{3\left(x+2\right)}{2x^3+2x+2x^2+2}+\frac{2x^2-x-10}{2x^3-2-2x^2+2x}\right]:\left[\frac{5}{x^2-1}+\frac{3}{2x+2}-\frac{3}{2x-2}\right]\)

\(A=\left[\frac{3\left(x+2\right)}{2x^2\left(x+1\right)+2\left(x+1\right)}+\frac{2x^2+4x-5x-10}{\left(2x^3-2x^2\right)+\left(2x-2\right)}\right]:\left[\frac{5}{x^2-1}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)

\(A=\left[\frac{3\left(x+2\right)}{\left(2x^2+2\right)\left(x+1\right)}+\frac{2x\left(x+2\right)-5\left(x+2\right)}{2x^2\left(x-1\right)+2\left(x-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)

\(A=\left[\frac{3\left(x+2\right)}{\left(2x^2+2\right)\left(x+1\right)}+\frac{\left(2x-5\right)\left(x+2\right)}{\left(2x^2+2\right)\left(x-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x-1\right)}\right]\)

\(A=\left[\frac{3\left(x+2\right)\left(x-1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}+\frac{\left(2x-5\right)\left(x+2\right)\left(x+1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{5\cdot2}{2\left(x+1\right)\left(x-1\right)}+\frac{3\left(x-1\right)}{2\left(x^2-1\right)}-\frac{3\left(x+1\right)}{2\left(x^2-1\right)}\right]\)

\(A=\left[\frac{3\left(x+2\right)\left(x-1\right)+\left(2x-5\right)\left(x+2\right)\left(x+1\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{10}{2\left(x^2-1\right)}+\frac{3x-3}{2\left(x^2-1\right)}-\frac{3x+3}{2\left(x^2-1\right)}\right]\)

\(A=\left[\frac{\left(x+2\right)\left[3x-3+\left(2x-5\right)\left(x+1\right)\right]}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\left[\frac{10+3x-3-3x-3}{2\left(x^2-1\right)}\right]\)

\(A=\left[\frac{\left(x+2\right)\left(3x-3+2x^2+2x-5x-5\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\right]:\frac{4}{2\left(x^2-1\right)}\)

\(A=\frac{\left(x+2\right)\left(2x^2-8\right)}{\left(2x^2+2\right)\left(x^2-1\right)}\cdot\frac{\left(x^2-1\right)}{2}\)

\(A=\frac{\left(x+2\right)2\left(x^2-4\right)}{2\left(2x^2+2\right)}\)

\(A=\frac{2\left(x+2\right)\left(x-2\right)\left(x+2\right)}{4\left(x^2+1\right)}\)

\(A=\frac{\left(x+2\right)^2\left(x-2\right)}{2\left(x^2+1\right)}\)

:>>> Chả biết đúng không nữa nhưng số to quá :>>