Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A thuộc Z
=> n + 1 chia hết cho n - 3
n - 3 + 4 chia hết cho n - 3
4 chia hết cho n - 3
n - 3 thuộc U(4) = {-4 ; -2 ; -1 ; 1 ; 2; 4}
n thuộc {-1 ; 1 ; 2 ; 4 ; 5 ; 7}
a, Gọi UCLN(2n+1, 3n+2) là d. Ta có:
2n+1 chia hết cho d=> 6n+3 chia hết cho d
3n+2 chia hết cho d=> 6n+4 chia hết cho d
=> 6n+4 - (6n+3) chia hết cho d
=> 1 chia hết cho d
=>ƯCLN(2n+1,3n+2)=1
=>\(\frac{2n+1}{3n+2}\)tối giản(đpcm)
a) n-1-n+3 = 2
n-3 (Ư)2 = -1; 1; -2;2
n= 2; 4; 1 ; 5
b) tuong tu;
n=2;4
\(A=\frac{n-5}{n+1}\)
Để A có giá trị nguyên
=> n-5 chia hết n+1
=> (n+1)-6 chia hết n+1
=> n+1 \(\in\)Ư (6) = \(\left(\text{±}1;\text{±}2;\text{±}3\text{;±}6\right)\)
Ta có bảng :
n+1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
Câu b tự làm
a, Để a nguyên thì n-5 chia hết cho n+1
suy ra n-1+6 chia hết cho n-1
Do n-1 chia hết cho n-1 nên 6 chia hết cho n-1
Mà n thuộc Z nên n-1 thuộc Z suy ra n-1 thuộc {1;-1;2;-2;3;-3;6;-6}
suy ra n thuộc {2;0;3;-1;4;-2;7;-5}
Mà n khác -1 nên n thuộc {2;0;3;4;-2;7;-5}
b, Gọi d là ước nguyên tố chung của n-5 và n+1
Suy ra n-5 chia hết cho d, n+1 chia hết cho d
Suy ra (n+1)-(n-5) chia hết cho d
suy ra n+1-n+5 chia hết cho d hay 6 chia hết cho d
Do d nguyên tố nên d thuộc {2;3}
Với d=2 thì n-5 và n+1 chia hết cho 2, n=2k+1(k thuộc Z)
Với d=3 thif n-5 và n+1 chia hết cho 3, n=3k+2(k thuộc Z)
Vây với n khác dạng 2k+1 và 3k+2 (k thuộc Z) thì A tối giản
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
1,Gọi UCLN(n+1,n+2)=d
Ta có:n+1 chia hết cho d
n+2 chia hết cho d
=>(n+2)-(n+1) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy \(\frac{n+1}{n+2}\)tối giản
+Với n thuộc Z thì n+7 và n+2 là các số nguyên khác 0.
+Giả sử n+7/n+2 chưa tối giản
=>n+7 và n+2 chia hết cho số nguyên tố d
+Vì (n+7) chia hết cho d (bạn viết kí hiệu chia hết nha!!)
(n+2) chia hết cho d
=>(n+7)-(n+2) chia hết cho d
=>n+7-n-2 chia hết cho d
=>5 chia hết cho d
Mà d là số nguyên tố
nên d=5
+Với d=5
=>(n+2) chia hết cho 5
=>n+2=5k(k thuộc N sao)
n =5k-2
Vậy n khác (viết kí hiệu nha) 5k-2( k thuộc N sao), n > -2 thì n+7/n+2 là phân số tối giản.
Chúc bạn học tốt!!
Bạn nhớ k đúng cho mình nha!!
+Với n thuộc Z thì n+7 và n+2 là các số nguyên khác 0.
+Giả sử n+7/n+2 chưa tối giản
=>n+7 và n+2 chia hết cho số nguyên tố d
+Vì (n+7) chia hết cho d
(n+2) chia hết cho d
=>(n+7)-(n+2) chia hết cho d
=>n+7-n-2 chia hết cho d
=>5 chia hết cho d
Mà d là số nguyên tố
nên d=5
+Với d=5
=>(n+2) chia hết cho 5
=>n+2=5k(k thuộc N sao)
n =5k-2
Vậy n khác 5k-2( k thuộc N sao), n > -2 thì n+7/n+2 là phân số tối giản.
A= \(\frac{n+3}{n-2}\)=\(\frac{\left(n-2\right)+5}{n-2}\)=1+\(\frac{5}{n-2}\)
Để A là phân số tối giản khi n-2 \(\pm\) Ư(5)
Vậy n-2\(\pm\)5k
<=> n\(\pm\)5h+2
Đặt: ( n + 3 ; n - 2 ) = d ( d là số tự nhiên )
=> \(\hept{\begin{cases}n+3⋮d\\n-2⋮d\end{cases}}\Rightarrow\left(n+3\right)-\left(n-2\right)⋮d\Rightarrow5⋮d\)
=> d = 1 hoặc d = 5
Để A là phân số tối giản thì d = 1 => d khác 5
+) Với d = 5 => \(\hept{\begin{cases}n+3⋮5\\n-2⋮5\end{cases}}\Rightarrow\hept{\begin{cases}2n+6⋮5\\n-2⋮5\end{cases}\Rightarrow}\left(2n+6\right)-\left(n-2\right)⋮5\Rightarrow n+8⋮5\)
=> Tồn tại số nguyên k sao cho : n + 8 = 5k => n = 5k - 8
=> n = 5k - 8 thì d = 5
=> n \(\ne\)5k - 8 thì d = 1
Vậy n \(\ne\)5k - 8 thì A là phân số tối giản.
\(A=1+\frac{5}{n-2}\)(n khác 2)
Để A là phân số tối giản => \(\frac{5}{n-2}\)là phân số tối giản
=> n-2 là số nguyên chẵn
=> n là số nguyên chẵn và n khác 2