Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Gọi d là ƯC(3n+1;5n+2)
3n+1 chia hết d; 5n+2 chia hết d
5(3n+1) chia hết d;3(5n+2) chia hết d
15n+5 chia hết d; 15n+6 chia hết d
1 chia hết d
d=1
tối giản với n thuộc N
B; gọi d là ƯC(12n+1;30n+2)
12n+1 chia hết d; 30n+2 chia hết d
5(12n+1) chia hết d; 2(30n+2) chia hết d
60n+5 chia hết d; 60n+4 chia hết d
1 chia hết d
d=1
tối giản ...
D;2n+1 chia hết d;2n^2-1 chia hết d
n(2n+1) chia hết d ; 2n^2-1 chia hết d
2n^2+n chia hết d ;2n^2-1 chia hết d
n+1 chia hết d
2(n+1)=2n+2 chia hết d
1 chia hết d
tối giản
Hiện câu 1 mih chưa giải đc
Đây là đ.a câu 2
\(\frac{4c}{4c+57}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(Cosi) (1)
Từ đề bài \(\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}\le1-\frac{57}{4c+57}\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}+\frac{57}{4c+57}\le1\) (*)
Từ (*) \(\Rightarrow1-\frac{1}{a+1}=\frac{a}{a+1}\ge\frac{35}{35+2b}+\frac{57}{4c+57}\ge2\sqrt{\frac{35.57}{\left(35+2b\right)\left(4c+57\right)}}\)(2)
Từ (*) \(\Rightarrow1-\frac{35}{35+2b}=\frac{2b}{35+2b}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(3)
Nhân vế với vế của (1);(2);(3) lại ta được :
\(\frac{4c.a.2b}{\left(4c+57\right)\left(a+1\right)\left(35+2b\right)}\ge8\sqrt{\frac{57.35.35.57}{\left(4c+57\right)^2\left(a+1\right)^2\left(35+2b\right)^2}}\)
\(\Leftrightarrow abc\ge35.57=1995\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a+1}=\frac{35}{35+2b}=\frac{57}{4c+57}\\abc=1995\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2b}{35}=\frac{4c}{57}\\abc=1995\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=35\\c=\frac{57}{2}\end{cases}}\) Vậy \(MinA=1995\) tại \(a=2;b=35;c=\frac{57}{2}\)
1/
a3+b3+c3=2abc
vì a+b+c=0
=> a+b=-c
GTNN của c là -1. với c=1=> a+b=-1=> a=0và b=-1 hoặc a=-1 và b=0
khi đó. A=2.(-1).1.0=0
=> GTNN của A là......
sửa \(n^2+5\)thành \(n+5\)nha các bạn
Gọi ƯCLN( n^2 + 4 ; n^2 + 5 ) = d ( d là số tự nhiên )
Suy ra : \(n^2+4⋮d\)
\(n^2+5⋮d\)
Nên \(\left(n^2+5\right)-\left(n^2+4\right)=1\)
\(\Rightarrow1⋮d\)\(\Leftrightarrow d=\left\{1;-1\right\}\)
Vậy phân số trên luôn là phân số tối giản nên không có n thỏa mãn A không tối giản