K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 6 2021

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\)

Dấu \(=\)xảy ra khi \(a=b\).

11 tháng 3 2019

Ta có: \(\left(a-b\right)^2\ge0\) (đúng) 

\(\Rightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\)

Ta có: \(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\)

"=" khi a=b. Nhưng a<b nên dấu bằng ko xảy ra,vậy ta có đpcm

12 tháng 3 2019

                         Giải

Không giảm tính tổng quát, giả sử \(a\ge b\) suy ra a = b + m \(\left(m\ge0\right)\)

Ta có: \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

           \(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}\)

           \(=1+1=2\)

Vậy \(\frac{a}{b}+\frac{a}{b}\ge2\) (dấu = \(\Leftrightarrow\) m = 0\(\Leftrightarrow\) a = b)

14 tháng 3 2017

Cách 1: Nếu bạn đã học các hằng đẳng thức đáng nhớ.

\(\frac{a}{b}+\frac{b}{a}\)\(=\frac{a^2+b^2}{ab}\)

\(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a-b\right)^2}{ab}\)

Vì a,b > 0 nên \(\frac{\left(a-b\right)^2}{ab}>0\)

hay \(\Rightarrow\frac{a^2+b^2}{ab}-2\)\(>0\)

=>\(\frac{a^2+b^2}{ab}>2\)

=>\(\frac{a}{b}+\frac{b}{a}>2\)

Cách 2: nếu bạn đã học bất đẳng thức cô-si:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}\ge2\sqrt{1}>2\)(theo bất đẳng thức cô-si)

23 tháng 5 2018

Ta có : \(\frac{a}{b}+\frac{b}{a}-2\)

\(=\frac{a^2}{ab}+\frac{b^2}{ab}-\frac{2ab}{ab}\)

\(=\frac{a^2-2ab+b^2}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}\ge0\) ( do a;b > 0 )

Dấu "=" xảy ra khi :

\(a-b=0\Leftrightarrow a=b\)

Vậy ...

23 tháng 5 2018

Áp dụng bđt AM-GM: \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ab}}=2\)

Dấu "=" xảy ra khi: a=b 

13 tháng 4 2018

Làm câu b :

S = (a + b)/c + (b + c)/a + (c + a)/b 
S = (a + b)/c + 1 + (b + c)/a + 1 + (c + a)/b + 1 - 3 
S = (a + b + c)/c + (a + b + c)/a + (a + b + c)/b - 3 
S = (a + b + c)(1/a + 1/b + 1/c) - 3 

Áp dụng bđt Cosi cho 3 số dương ta có: 
. a + b + c ≥ 3.³√(a.b.c) 
. 1/a + 1/b + 1/c ≥ 3.³√(1/a.1/b.1/c) 

--> S ≥ 3.³√(a.b.c).3.³√(1/a.1/b.1/c) - 3 = 9 - 3 = 6 --> đ.p.c.m 

Dấu " = " xảy ra ⇔ a = b = c

25 tháng 9 2015

Không giảm tính tổng quát, giả sử a > b => a = b + m (m > 0)

Ta có \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

                       \(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=1+1=2\)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\) (dấu = xảy ra khi m = 0 <=> a = b)

25 tháng 9 2015

ta có (a-b)2\(\ge\)0

a2+b2\(\ge\)2ab (1)

ta có \(\frac{a}{b} +\frac{b}{a}=\frac{a^2+b^2}{ab}\)

kết hợp với (1) ta có \(\frac{a}{b} +\frac{b}{a}=\frac{a^2+b^2}{ab}\) \(\ge\frac{2ab}{ab}=2\)

vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

21 tháng 7 2016

a) Vì a > b

=> a.n > b.n

=> a.n + a.b > b.n + a.b

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n ( đpcm)

Câu b và c lm tương tự

10 tháng 3 2016

tìm trên mạng có đó bạn đừng đăng lên đây

16 tháng 8 2020

TA CÓ:   \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)

=>   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\left(1\right)\)

TA LUÔN CÓ:   \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

=>   \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

TỪ (1) VÀ (2) =>   \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\) 

VẬY TA CÓ ĐPCM.

16 tháng 8 2020

Cho  \(B=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Cm B>1
Ta có \(\frac{a}{a+b+c}< \frac{a}{a+b}\)(vì phân số cùng tử thì mẫu số nào lớn hơn thì phân số đó bé hơn)
CM tương tự ta có\(\frac{b}{a+b+c}< \frac{b}{b+c}\)

                             \(\frac{c}{a+b+c}< \frac{c}{c+a}\)

Cộng vế theo vế ta có \(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

                                       1 < B

CM B<2
Ta có \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)( Vì ta có công thức \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}\)

Cm tương tự như phần trên rồi cộng vế theo vế ta có B<2

                                      

                                       
 

1 tháng 6 2017

Không mất tính tổng quát, giả sử a \(\ge\)

\(\Rightarrow\) a = b + m ( m \(\ge\)0 )

Ta có :  \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=1+1=2\)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

Dấu " = " chỉ xảy ra \(\Leftrightarrow\) m = 0 \(\Leftrightarrow\)a = b 

1 tháng 6 2017

Ta có: \(\frac{a}{b}>0\Rightarrow\) a và b cùng dấu \(\Rightarrow\frac{b}{a}>0\)

Áp dụng bất đẳng thức cô si ta có : \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

Dấu bằng xẩy ra khi và chỉ khi \(\frac{a}{b}=\frac{b}{a}\Leftrightarrow a^2=b^2\Leftrightarrow a=b\)

29 tháng 5 2018

bạn lưu câu hỏi ,rồi tìm trên google ,bạn bấm chọn cho 2 số hữu tỉ a/b và c/d và thấy tên thien ty tfboy đó là kết quả