K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HH
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HH
1
22 tháng 6 2021
Để \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
<=> \(\dfrac{a}{b}+\dfrac{b}{a}-2\ge0\)
<=> \(\dfrac{a^2-2ab+b^2}{ab}\ge0\)
<=> \(\dfrac{\left(a-b\right)^2}{ab}\ge0\)
Mà \(\left(a-b\right)^2\ge0\)
\(\dfrac{a}{b}>0\) <=> ab > 0
=> đpcm
Dấu "=" xảy ra <=> a = b
DT
2
7 tháng 4 2017
Thiếu đề thì phải
Nhìn đề hình như là zầy phải k
\(\frac{a}{b}>0\)chứng minh \(\frac{a}{b}+\frac{b}{a}\ge\)số nào đó
Sửa để đi
7 tháng 4 2017
ta có: \(\frac{a}{b}>0\Rightarrow\frac{b}{a}>0\Rightarrow\frac{a}{b}+\frac{b}{a}\)>_ 0
CM
2 tháng 6 2019
Ta có: (-a) . b = - (a . b) = a . (-b).
Do đó (theo định nghĩa SGK).
CM
8 tháng 2 2017
Ta có: (-a) . b = - (a . b) = a . (-b).
Do đó (theo định nghĩa SGK).
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\)
Dấu \(=\)xảy ra khi \(a=b\).