Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)
\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)
\(\Rightarrow\) \(1\) \(⋮\) \(d\)
\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)
\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)
\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản
1/ Đặt ƯCLN(3n - 2; 4n - 3) = d
=> \(3n-2⋮d\)và \(4n-3⋮d\)
hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)
hay \(12n-8⋮d\)và \(12n-9⋮d\)
\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Leftrightarrow12n-8-12n+9⋮d\)
\(\Leftrightarrow-8+9⋮d\)
Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)
=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau
=> phân số \(\frac{3n-2}{4n-3}\)tối giản.
Gọi d là ƯCLN(9n+5;2n+1)
Ta có 9n+5\(⋮\)d;2n+1\(⋮\)d
=>2*(9n+5)\(⋮\)d;9*(2n+1)\(⋮\)d
=>18n+10\(⋮\)d;18n+9\(⋮\)d
=>[(18n+10)-(18n+9)]\(⋮\)d
=>[18n+10-18n-9]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(9n+5;2n+1)=1 Nên phân số \(\frac{9n+5}{2n+1}\) luôn là phân số tối giản(nEN*)
Đề phải là nEN* hoặc n>1
\(\frac{n+3}{n+4}\)
Gọi d=U7CLN(n+3,n+4)
\(\Rightarrow\hept{\begin{cases}\left(n+3\right)⋮d\\\left(n+4\right)⋮d\end{cases}}\)
\(\Leftrightarrow\left(n+4\right)-\left(n+3\right)⋮d\)
\(\Leftrightarrow1⋮d\) \(\Leftrightarrow d=1\)
Vậy \(\frac{n+3}{n+4}\)là phân số tối giản
( *Bạn làm theo pp: Phân số tối giản khi U7CLN(tử,mẫu)=1
*Cái dòng (n+4) - (n+3) thì mấy bài tương tự, cái dòng đó ta sẽ lấy số lớn trừ số nhỏ chứ không nhất thiết phải lấy số dưới trừ số trên)
Mấy bài kia bạn làm tương tự nha! Chúc bạn học giỏi!!!
Gọi d là Ư(4n+1;6n+1) (1)
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6\left(4n+1\right)⋮d\\4\left(6n+1\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}24n+6⋮d\\24n+4⋮d\end{cases}}\)
\(\Rightarrow\left(24n+6\right)-\left(24n+4\right)⋮d\)
\(\Rightarrow24n+6-24n-4⋮d\)
\(\Rightarrow\left(24n-24n\right)+\left(6-4\right)⋮d\)
\(\Rightarrow0+2⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯ\left(2\right)=\left\{-1;-2;1;2\right\}\) (2)
(1)(2) \(\Rightarrow\)\(ƯC\left(4n+1;6n+1\right)=\left\{-1;-2;1;2\right\}\)
mà \(4n⋮2;1⋮̸2\) \(\Rightarrow4n+1⋮̸2\)
\(\RightarrowƯC\left(4n+1;6n+1\right)=\left\{-1;1\right\}\)
vậy phân số \(\frac{4n+1}{6n+1}\) là p/s tối giản với mọi n thuộc N*
Gọi d là ƯCLN (4n+3;2n+1)
Ta có 4n+3 chia hết cho d(1);2n+1 chia hết cho d
=>2*(2n+1) chia hết cho d
=>4n+2 chia hết cho d(2)
Từ (1) và (2)=>(4n+3)-(4n+2) chia hết cho d
=> 1 chia hết cho d
=>d=1
Vì d=1 nên ƯCLN (4n+3;2n+1)=1
=>Phân số \(\frac{4n+3}{2n+1}\) là phân số tối giản với mọi số tự nhiên n
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.