Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(\hept{\begin{cases}x\ge0\\x\ne1;x\ne2\end{cases}}\)
Ta có \(P=\frac{x\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)}{\left(x\sqrt{x}+x\right)-\left(x+\sqrt{x}\right)-2\left(\sqrt{x}+1\right)}+\frac{x\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}{\left(x\sqrt{x}-x\right)+\left(x-\sqrt{x}\right)-2\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(x-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-2\right)}+\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1+x+2\sqrt{x}+1}{x-1}\)
\(=2.\frac{x+1}{x-1}\)
đáp án nè ko bít có đúng đâu \(\frac{-2\sqrt{x}}{-6\sqrt[]{x}}\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
ĐKXĐ : \(x\ge1;x\ne2;x\ne3\)
a) P = \(\left[\frac{\sqrt{x}+\sqrt{x-1}}{1}-\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-3}\right].\frac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\)( trục căn thức ở mẫu thứ nhất )
\(P=\left(\sqrt{x}-\sqrt{2}\right).\frac{\left(\sqrt{x}-\sqrt{2}\right)}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}=\frac{\sqrt{2}-\sqrt{x}}{\sqrt{x}}\)
b) \(x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\Rightarrow\sqrt{x}=\sqrt{2}-1\)
\(P=\frac{\sqrt{2}-\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\frac{1}{\sqrt{2}-1}=\sqrt{2}+1\)