Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đẻ \(P< 1\)thì :
\(P=\left(\frac{x}{x+2}+\frac{x}{x-2}-\frac{2}{x^2-4}\right).\frac{x-2}{2x+2}< 1\)
\(=\left(\frac{x\left(x-2\right)\left(x^2-4\right)}{\left(x+2\right)\left(x-2\right)\left(x^2-4\right)}+\frac{x\left(x+2\right)\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)\left(x^2-4\right)}-\frac{2\left(x+2\right)\left(x-2\right)}{\left(x^2+4\right)\left(x+2\right)\left(x-2\right)}\right).\frac{x-2}{2x+2}\)
\(=\left(\frac{x\left(x-2\right)\left(x^2-4\right)+x\left(x+2\right)\left(x^2-4\right)-2\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)\left(x^2-4\right)}\right).\frac{x-2}{2x+2}\)
\(=\left(\frac{2x^4-10x^2+8}{x^4-8x^2+16}\right).\frac{x-2}{2x+2}=\left(2x^4-10x^2+8\right)\left(2x+2\right)=\left(x-2\right)\left(x^4-8x^2+16\right)\)
PT tương đương vs : \(\left(2x^4-10x^2+8\right)\left(2x+2\right)-\left(x-2\right)\left(x^4-8x^2+16\right)< 1\)
Khi đó pt trở thành : \(3x^5+6x^4-12x^3-36x^2+48< 1\)
Chắc vại đó ==
a) \(-ĐKXĐ:x\ne\pm2;1\)
Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)
b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)
\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)
Vậy với mọi x thỏa mãn x>1 thì A > 0
c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy x = -1;-2
a) Đk \(x\ne\pm1\), sau khi rút gọn ta được: (bạn tư làm)
\(P=\frac{x}{x+1}\)
b) Khi \(\left|x-\frac{2}{3}\right|=\frac{1}{3}\) thì hoặc \(x-\frac{2}{3}=\frac{1}{3}\) hoặc \(x-\frac{2}{3}=-\frac{1}{3}\)
Hay là \(x=1\) hoặc \(x=\frac{1}{3}\)
Do để P có nghĩa thì \(x\ne\pm1\) nên \(x=\frac{1}{3}\), khi đó:
\(P=\frac{\frac{1}{3}}{\frac{1}{3}+1}=\frac{1}{4}\)
c) P > 1 khi \(\frac{x}{x+1}>1\)
\(\Leftrightarrow1-\frac{1}{x+1}>1\)
\(\Leftrightarrow\frac{1}{x+1}< 0\)
\(\Leftrightarrow x< -1\)
e) Đề không rõ ràng
M = \(\left(\frac{9}{x\left(x^2-9\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
<=> M =
a, tự lm......
P=x2 / x-1
b, P<1
=> x2/x-1 <1
<=>x2/x-1 -1 <0
<=>x2-x+1 / x-1<0
Vi x2-x+1= (x -1/2 )2+3/4 >0
=> Để P<1
x-1 <0
x <1
c, x2/x-1 = x2-1+1/x-1
= x+1 +1/x-1
= 2 +(x-1) + 1/x-1
Áp dụng BDT Cô si ta có :
x-1 + 1/x-1 >hoặc = 2
=> P>= 3
Đầu = xảy ra <=> x=2( x >1)
Vay......
làm đúng nhuwng phần c, phải >=4 cơ vì công cả 2 vế với 2 ta có P>=4
ĐKXĐ: \(x\ne0;x\ne\pm2\)
a, \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left[\frac{3x^2}{3x\left(x-2\right)\left(x+2\right)}-\frac{6x\left(x+2\right)}{3x\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}\right]:\left[\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right]\)
\(=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)
\(=\frac{-18x}{3x\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)
\(=\frac{-3x}{3x\left(x-2\right)}=\frac{-1}{x-2}\)
b, Ta có: \(\left|x\right|=\frac{1}{2}\Rightarrow x=\pm\frac{1}{2}\)
Với \(x=\frac{1}{2}\) thì \(A=\frac{-1}{\frac{1}{2}-2}=\frac{-1}{\frac{-3}{2}}=\frac{2}{3}\)
Với \(x=\frac{-1}{2}\)thì \(A=\frac{-1}{\frac{-1}{2}-2}=\frac{-1}{\frac{-5}{2}}=\frac{2}{5}\)
c, Để A=2 <=> \(\frac{-1}{x-2}=2\Leftrightarrow-1=2x-4\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Vậy x=3/2 thì A=2
d, Để A<0 <=> \(\frac{-1}{x-2}< 0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
Vậy với x>2 thì A<0
e, Để A thuộc Z <=> x-2 thuộc Ư(-1)={1;-1}
Ta có: x-2=1 => x=3 (t/m)
x-2=-1 => x=1 (t/m)
Vậy x thuộc {3;1} thì A thuộc Z
a) \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)(ĐKXĐ: x khác 0; + 2)
\(A=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x+2}+\frac{10-x^2}{x+2}\right)\)
\(A=\left(\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\right):\frac{6}{x+2}\)
\(A=\frac{-6x}{x\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{-x}{x\left(x-2\right)}=\frac{1}{2-x}.\)
Vậy \(A=\frac{1}{2-x}.\)
b) \(\left|x\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\). Nếu \(x=\frac{1}{2}\)thì \(A=\frac{1}{2-\frac{1}{2}}=\frac{2}{3}.\)
Nếu \(x=-\frac{1}{2}\)thì \(A=\frac{1}{2+\frac{1}{2}}=\frac{2}{5}.\)Vậy ...
c) Để A=2 thì \(\frac{1}{2-x}=2\Rightarrow4-2x=1\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}.\)Vậy ...
d) Để A<0 thì \(\frac{1}{2-x}< 0\Rightarrow2-x< 0\Leftrightarrow x>2.\)Vậy ...
e) Để A thuộc Z thì \(\frac{1}{2-x}\in Z\Rightarrow1⋮2-x\). Mà 2-x thuộc Z (Do x thuộc Z)
Nên \(2-x\in\left\{1;-1\right\}\Rightarrow x\in\left\{1;3\right\}.\)(t/m ĐKXĐ)
Vậy x=1 hay x=3 thì A nguyên.
Xét: \(p>2\)
\(\Leftrightarrow\frac{x^2}{x-1}-2>0\)
\(\Leftrightarrow\frac{x^2-2x+2}{x-1}>0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2+1}{\left(x-1\right)}>0\)
Mà \(\left(x-1\right)^2+1>0\left(\forall x\right)\)
\(\Rightarrow x-1>0\Rightarrow x>1\)
Vậy x > 1
Từ bài kia à :v ĐKXĐ vẫn thế nhé ._.
Để P > 0
<=> \(\frac{x^2}{x-1}>2\)
<=> \(\frac{x^2}{x-1}-2>0\)
<=> \(\frac{x^2}{x-1}-\frac{2\left(x-1\right)}{x-1}>0\)
<=> \(\frac{x^2}{x-1}-\frac{2x-2}{x-1}>0\)
<=> \(\frac{x^2-2x+2}{x-1}>0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}x^2-2x+2>0\\x-1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}llđ\forall x\\x>1\end{cases}}\Leftrightarrow x>1\)
2. \(\hept{\begin{cases}x^2-2x+2< 0\\x-1< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}voli\\x< 1\end{cases}}\)( loại )
Vậy x > 1