Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2:\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}.\left(\sqrt{x}+1\right)=m\left(x+1\right)-2\Leftrightarrow\sqrt{x}-2-mx-m+2=0\Leftrightarrow\sqrt{x}=m\left(x+1\right)\Leftrightarrow m=\frac{\sqrt{x}}{x+1}\)
vì x>=0 =>x+1>0 \(\sqrt{x}\ge0\)=> m phải >=0
\(x\ne4\Rightarrow x+1\ne5;\sqrt{x}\ne2\Rightarrow m\ne\frac{2}{5}\)
\(x\ne9\Rightarrow x+1\ne10;\sqrt{x}\ne3\Rightarrow m\ne\frac{3}{10}\)
a)ĐKXĐ:x khác 4, x>0
\(Q=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right):\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{2\sqrt{x}}{x-4}\cdot\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{2x}{\left(x-4\right)\left(\sqrt{x}-2\right)}\)
mình nghĩ đề sai nên không làm tiếp nữa
1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)
\(\)
DKXD x>0 x khac 1
\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(B=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3\left(\sqrt{x}-1\right)}{x-5\sqrt{x}+6}\left(ĐKXĐ:x\ne4;x\ne9;x\ge0\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-4-\left(x-2\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{2-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{1}{3-\sqrt{x}}\)
\(B< -1\)\(\Leftrightarrow\) \(\frac{1}{3-\sqrt{x}}< -1\)\(\Rightarrow\sqrt{x}-3< 1\Leftrightarrow x< 16\)
Mặt khác : Vì \(B< -1< 0\)nên \(3-\sqrt{x}< 0\Rightarrow x>9\)
Vậy để \(B< -1\)thì \(9< x< 16\)
\(2B\in Z\Leftrightarrow B\in Z\)
\(\Leftrightarrow\frac{1}{3-\sqrt{x}}\in Z\)=> \(3-\sqrt{x}\inƯ\left(1\right)\)
\(\Rightarrow3-\sqrt{x}\in\left\{-1;1\right\}\)\(\Rightarrow x\in\left\{16\right\}\)( Loại x = 4 vì không thoả mãn điều kiện)
Xin lỗi vì để bài mình ghi lộn :))
Còn lại thì ổn rồi :))
\(\frac{5}{\sqrt{x}+1}>2\\ \frac{5}{\sqrt{x}+1}>\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\\ 5>2.\left(\sqrt{x}+1\right)\\ 5>2\sqrt{x}+2\\ 3>2\sqrt{x}\\ \sqrt{x}=\frac{3}{2}\)
x= 9/4
đỗ c3 nhá :))
\(\frac{5}{\sqrt{x}+1}>2\)
\(\Leftrightarrow\sqrt{x}+1< \frac{5}{2}\)
\(\Leftrightarrow\sqrt{x}< \frac{3}{2}\)
\(\Leftrightarrow x< \frac{9}{4}\)