Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}4a+2b+3=-1\\-\dfrac{b}{2a}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b=-4\\b=-4a\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-4\end{matrix}\right.\Leftrightarrow a-b=5\)
Parabol y = ax2 + bx + 2 có đỉnh I(2 ; –2), suy ra :
Từ (1) ⇒ b2 = 16.a2, thay vào (2) ta được 16a2 = 16a ⇒ a = 1 ⇒ b = –4.
Vậy parabol cần tìm là y = x2 – 4x + 2.
Lời giải:
Theo bài ra thì tọa độ đỉnh của parabol là $(-2,19)$
Từ hàm $y=ax^2+bx+3=a(x+\frac{b}{2a})^2+3-\frac{b^2}{4a}$ ta có tọa độ đỉnh của parabol là:
$(\frac{-b}{2a}, 3-\frac{b^2}{4a})$
$\Rightarrow \frac{-b}{2a}=-2; 3-\frac{b^2}{4a}=19$
$\Rightarrow a=-4; b=-16$
Parabol có đỉnh I(1;4) hay I(1;4) thuộc parabol
\( \Rightarrow 4 = {1^2} + 1.b + c \Leftrightarrow b + c = 3\)
Chọn C.
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=2\\\dfrac{4ac-b^2}{4a}=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-4a\\12a-16a^2=-8a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=-4a\\a=\dfrac{5}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{4}\\b=-5\end{matrix}\right.\)
\(\Rightarrow a+2b=...\)