K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

help me

NV
1 tháng 6 2020

Gọi pt d có dạng \(y=ax+b\)

\(f\left(x\right)-g\left(x\right)\le0\Leftrightarrow x^2-ax-b\le0\)

Do nghiệm của BPT là \(\left[1;3\right]\Rightarrow f\left(x\right)-g\left(x\right)=0\) có 2 nghiệm pb \(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Theo Viet đảo: \(\left\{{}\begin{matrix}a=3+1\\-b=3.1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-3\end{matrix}\right.\) \(\Rightarrow y=4x-3\Leftrightarrow4x-y-3=0\)

\(\Rightarrow A\left(1;1\right)\) ; \(B\left(3;9\right)\)

Diện tích tam giác ABM lớn nhất khi \(d\left(M;d\right)\) lớn nhất

\(d\left(M;d\right)=\frac{\left|4m-m^2-3\right|}{\sqrt{17}}=\frac{\left|m^2-4m+3\right|}{\sqrt{17}}=\frac{\left|\left(m-2\right)^2-1\right|}{\sqrt{17}}\le\frac{1}{\sqrt{17}}\)

Dấu "=" xảy ra khi \(m=2\)

NM
4 tháng 9 2021

ta có phương trình tương đương

\(x^2+4x+4=1-m\Leftrightarrow\left(x+2\right)^2=1-m\) có hai nghiệm phân biệt khi \(1-m>0\Leftrightarrow m< 1\)

Khi đó hai nghiệm sẽ là : \(\hept{\begin{cases}x=-2+\sqrt{1-m}\\x=-2-\sqrt{1-m}\end{cases}}\) hai nghiệm nhỏ hơn hoặc bằng 1 nên ta có :

\(-2-\sqrt{1-m}< -2+\sqrt{1-m}\le1\)\(\Leftrightarrow\sqrt{1-m}\le3\Leftrightarrow-8\le m\)

mà \(m\in\text{[-9,0)}\Rightarrow\text{ có 8 giá trị nguyên của m thỏa mãn đề bài}\)

4 tháng 9 2021

số nghiệm của phtrinh -x2 - 4x = m + 3 chính là số giao điểm của parabol y = -x2 - 4x và đường thẳng y = m + 3

ở đây mình sẽ dùng phương pháp quan sát đồ thị nhé:D

undefined

nhìn vào đồ thị, để phtrinh -x2 - 4x = m + 3 có 2 nghiệm phân biệt nhỏ hơn hoặc bằng 1 thì parabol phải cắt đường thẳng tại 2 điểm phân biệt có hoành độ nhỏ hơn hoặc bằng 1 => \(4>m+3\ge-5\Leftrightarrow1>m\ge-8\)

lại có: m\(\in\)[-9; 0) => m \(\in\)[-8; 0] và m nguyên => m \(\in\)\(\left\{-8;-7;-6;...;-1\right\}\)

4 tháng 9 2021

ai đó giúp mình với mình còn 3 tiếng nữa là tới hạn nộp bài rồi :(((

4 tháng 9 2021

bloody hell còn 2 tiếng nữa thôi pls send help

4 tháng 9 2021

ban  nham  roi   vi   khong  phai  nhu  the  dau  nen  ban  sai  roi. 

Câu 1: Tọa độ giao điểm của (P): \(y=x^{^{ }2}-4x\) với đường thẳng \(d:\) \(y=-x-2\) là: A. \(M\left(-1;-1\right),N\left(-2;0\right)\) B. \(M\left(1;-3\right),N\left(2;-4\right)\) C. \(M\left(0;-2\right),N\left(2;-4\right)\) D. \(M\left(-3;1\right),N\left(3;-5\right)\) Câu 2: Đường thẳng nào sau đây tiếp xúc với (P): \(y=2x^2-5x+3\)? A. \(y=x+2\) B. \(y=-x-1\) C. \(y=x+3\) D. \(y=-x+1\) Câu 3: Parabol (P): \(y=x^2+4x+4\) có số điểm chung với trục...
Đọc tiếp

Câu 1: Tọa độ giao điểm của (P): \(y=x^{^{ }2}-4x\) với đường thẳng \(d:\) \(y=-x-2\) là:

A. \(M\left(-1;-1\right),N\left(-2;0\right)\)

B. \(M\left(1;-3\right),N\left(2;-4\right)\)

C. \(M\left(0;-2\right),N\left(2;-4\right)\)

D. \(M\left(-3;1\right),N\left(3;-5\right)\)

Câu 2: Đường thẳng nào sau đây tiếp xúc với (P): \(y=2x^2-5x+3\)?

A. \(y=x+2\)

B. \(y=-x-1\)

C. \(y=x+3\)

D. \(y=-x+1\)

Câu 3: Parabol (P): \(y=x^2+4x+4\) có số điểm chung với trục hoành là:

A. 0

B. 1

C. 2

D. 3

Câu 4: Giao điểm của hai parabol \(y=x^2-4\)\(y=14-x^2\) là;

A. \(\left(2;10\right)\)\(\left(-2;10\right)\)

B. \(\left(\sqrt{14};10\right)\)\(\left(-14;10\right)\)

C. \(\left(3;5\right)\)\(\left(-3;5\right)\)

D. \(\left(\sqrt{18};14\right)\)\(\left(-\sqrt{18};14\right)\)

Câu 5:Cho parabol (P): \(y=x^2-2x+m-1\). Tìm tất cả các giá trị thực của m để parabol không cắt Ox.

A. \(m< 2\)

B. \(m>2\)

C. \(m\ge2\)

D. \(m\le2\)

1
26 tháng 10 2018

Câu 1:

Phương trình hoành độ giao điểm của (P) và (d):

\(x^2-4x=-x-2\)

\(x^2-3x+2=0\)

\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Với x= 2 ⇒ y=-2 -2 = -4

Với x= 1 ⇒ y = -1 -2 = -3

Vậy chọn B: M( 1; -3) và N(2;-4)

Câu 2:

Vì (d) tiếp xúc với (P)

nên Δ = 0 ⇒ phương trình có một nghiệm kép

Vậy chọn D: y= -x +1

Câu 3:

(P) : y =\(x^2+4x+4\)

Để (P) có điểm chung với trục hoành ⇔ y =0

Vậy chọn B : 1

Câu 4:

Phương trình hoành độ giao điểm của hai parabol:

\(x^2-4=14-x^2\)

\(2x^2-18=0\)

\(\left[{}\begin{matrix}x=3\Rightarrow y=14-3^2=5\\x=-3\Rightarrow y=14-\left(-3\right)^2=5\end{matrix}\right.\)

Vậy chọn C : (3;5) và (-3;5)

Câu 5: (P) : y= \(x^2-2x+m-1\)

Để (P) không cắt Ox

⇔ Δ < 0

\(b^2-4ac< 0\)

\(\left(-2\right)^2-4\left(m-1\right)< 0\)

⇔ 4 - 4m +4 < 0

⇔ -4m < -8

⇔ m > 2

Vậy chọn B : m> 2

AH
Akai Haruma
Giáo viên
12 tháng 5 2019

Lời giải:
PT hoành độ giao điểm của 2 ĐTHS:

\(x^2-4x+3=mx+3\)

\(\Leftrightarrow x^2-(m+4)x=0\)

\(\Leftrightarrow x(x-m-4)=0(*)\)

Để 2 ĐTHS cắt nhau tại 2 điểm phân biệt $A,B$ thì pt phải có 2 nghiệm phân biệt

\(\Leftrightarrow m\neq -4\). Khi đó, PT có 2 nghiệm phân biệt \(\left\{\begin{matrix} x_A=0\\ x_B=m+4\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} y_A=mx_A+3=3\\ y_B=mx_B+3=m^2+4m+3\end{matrix}\right.\)

\(\Rightarrow AB=\sqrt{(x_A-x_B)^2+(y_A-y_B)^2}=\sqrt{(m^2+1)(m+4)^2}\)

\(d(O,AB)=d(O,(d):y= mx+3)=\frac{|m.0-0+3|}{\sqrt{m^2+1}}=\frac{3}{\sqrt{m^2+1}}\)

Như vậy:

\(S_{OAB}=\frac{d(O,AB).AB}{2}=\frac{9}{2}\)

\(\Leftrightarrow \frac{3}{\sqrt{m^2+1}}.\sqrt{(m^2+1)(m+4)^2}=9\)

\(\Leftrightarrow |m+4|=3\Rightarrow m=-1\) hoặc $m=-7$