K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 10 2019

Từ đề bài \(\Rightarrow a>0\) và:

\(\left\{{}\begin{matrix}\frac{4ac-b^2}{4a}=-5\\a+b+c=-1\\c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b^2=36a\\a+b=-5\\c=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\frac{b^2}{36}\\\frac{b^2}{36}+b+5=0\\c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=4\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a=25\\b=-30\\c=4\end{matrix}\right.\)

14 tháng 9 2017

Chọn D.

2 tháng 4 2017

Vì (P) đi qua M(4;3) nên 3= 16a+ 4b+c     (1)  

Mặt khác (P) cắt Ox tại N(3;0) suy ra  0=9a+3b+c    (2) , (P) cắt Ox tại P nên P(t; 0) với  0= at2+ bt+c (*) ; (P) cắt Ox tại N và P nên phương trình (*) có 1 nghiệm là t=3 ( hoành độ điểm N) 

Từ (1) và (2); vế trừ vế  ta có 7a+ b=3 hay b= 3-7a

 suy ra: 

Thay vào (3) ta có: 

Suy ra a= 1; b= -4; c=3.

Vậy (P)  cần tìm là y= x2-4x+3.

Chọn B.

NV
11 tháng 3 2023

Từ điều kiện đề bài: (hiển nhiên a khác 0):

\(\left\{{}\begin{matrix}\dfrac{4ac-b^2}{4a}=-1\\a-b+c=7\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4a-b^2=-4a\\a-b=6\\c=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-6\right)^2-8a=0\\b=a-6\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\left\{2;18\right\}\\b=a-6\\c=1\end{matrix}\right.\)

Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=2x^2-4x+1\\y=18x^2+12x+1\end{matrix}\right.\)

27 tháng 3 2019

Đáp án A

28 tháng 6 2017

+ Parabol y = ax2 + bx + 2 đi qua M(1 ; 5)

⇒ 5 = a.12 + b.1 + 2 ⇒ a + b = 3 (1) .

+ Parabol y = ax2 + bx + 2 đi qua N(–2; 8)

⇒ 8 = a.( –2)2 + b.( –2) + 2 ⇒ 4a – 2b = 6 (2).

Từ (1) và (2) suy ra: a = 2; b = 1.

Vậy parabol cần tìm là y = 2x2 + x + 2.

NV
7 tháng 10 2019

1/ Do (P) qua A \(\Rightarrow c=1\) (thay tọa độ A vào pt (P) thôi)

(P) có đỉnh nằm trên trục hoành

\(\Rightarrow-\frac{\Delta}{4a}=0\Rightarrow\Delta=0\Rightarrow b^2-4ac=0\Rightarrow b^2=4ac=4a\Rightarrow a=\frac{b^2}{4}\)

Do (P) qua B \(\Rightarrow4a+2b+c=1\Rightarrow b^2+2b=0\Rightarrow\left[{}\begin{matrix}b=0\Rightarrow a=0\left(l\right)\\b=-2\Rightarrow a=1\end{matrix}\right.\)

2/ Cần tìm 3 ẩn mà chỉ cho 1 dữ liệu, how to giải?

3/ \(-\frac{b}{2a}=2>1>-2\)\(a=1>0\)

\(\Rightarrow\) hàm số nghịch biến trên \(\left[-2;1\right]\)

\(\Rightarrow y_{max}=y\left(-2\right)=15\)

30 tháng 11 2019

cảm ơn ạ

3 tháng 4 2018

Vì parabol đi qua ba điểm A, B, C nên ta có hệ phương trình:

Vậy (P): y = -x2 + 2x

Chọn C.

6 tháng 6 2019

(P) : y = ax2 + bx + c

Parabol có đỉnh I(1 ; 4) ⇒ –b/2a = 1 ⇒ b = –2a ⇒ 2a + b = 0.

Parabol đi qua I(1; 4) ⇒ 4 = a.12 + b . 1 + c ⇒ a + b + c = 4.

Paraol đi qua D(3; 0) ⇒ 0 = a.32 + b.3 + c ⇒ 9a + 3b + c = 0.

Giải hệ phương trình Giải bài 12 trang 51 sgk Đại số 10 | Để học tốt Toán 10 

ta được : a = –1 ; b = 2 ; c = 3.

Vậy a = –1 ; b = 2 ; c = 3.

26 tháng 11 2021

a=-1,b=2,c=3