Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớn hơn 3. khi chia p cho 3 ta có 2 dạng: p=3k+1 ; p=3k+2 (k thuộc N*)
Nếu p= 3k+2 => p+4= 3k +2 + 4 = 3k + 6 chia hết choa 2 và lớn hơn 2.
=> p+4 là hợp số ( trái với đề, loại)
vậy p = 3k+1.
=> 8p + 1 = 8(3k+1)+1 = 24k+8 +1=24k+9 chia hết cho 3 và lớn hơn 3.
=> 8p+1 là hợp số.
Vậy 8p+1 là hợp số(đpcm)
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
Nếu p = 3 suy ra 8p - 1 = 23 là số nguyên tố ; 8p + 1 = 25 là hợp số ( thoả mãn đề bài )
Nếu p \(\ne\)3 ta có :
p - 1 ; p ; p + 1 là ba số nguyên liên tiếp nên phải có một số chia hết cho 3
Mà p \(\ne\)3 nên p - 1 hoặc p + 1 chia hết cho 3 suy ra (p-1).(p+1) \(⋮\)3
Suy ra : (8p-1).(8p+1) = 64\(p^2\)- 1 = 63\(p^2\)+ \(p^2\)- 1 = 3.21.\(p^2\)+ (p-1).(p+1) \(⋮\)3
Vậy 8p+1 là hợp số
a) vì p là số nguyên tố lớn hơn 3. => khi chia p cho 3 ta có 2 dạng: p=3k+1 hoặc p=3k+2 (kϵ N*)
Nếu p=3k+2 => p+4 =3k+2+4=3k+6 chia hết cho 3 và lớn hơn 3.
=> p+4 là hợp số( trái với đề, loại)
vậy p=3k+1.
=> p+8 = 3k+1+8=3k+9 chia hết cho 3 và lớn hơn 3.
=> p+8 là hợp số.
Kết luận: p+8 là hợp số.(đpcm)
b) hình như còn thiếu cái điều kiện gí ý!? làm mình mệt mỏi quá.
Vì p là số nguyên tố , p > 3
nên p = 3k + 1 hoặc p = 3q + 2 (k;q \(\inℕ^∗\) )
Với p = 3k + 1
thì 8p2 + 1 = 8.(3k + 1)2 + 1 = 8.(9k2 + 6k + 1) + 1
= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)
=> 8p2 + 1 là hơp số (loại)
Với p = 3q + 2
8p2 + 1 = 8(3q + 2)2 + 1 = 72q2 + 96q + 33 \(⋮3\)
=> p = 3q + 2 (loại)
Vậy không tồn tại p để thỏa mãn điều kiện đề bài