Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là SNT >3\(\Rightarrow p\)có dạng 3k+1
hoặc 3k+2 ( k\(\in\)N*)
+) Với \(p=3k+2\Rightarrow4p+1=4.\left(3k+2\right)+1=12k+8+1=12k+9=3\left(4k+3\right)⋮3\)
Do k\(\in\)N*\(\Rightarrow4k+3>0\)
\(\Rightarrow3\left(4k+3\right)\)là hợp số
\(\Rightarrow3k+2\)( loại)
+) Với \(p=3k+1\Rightarrow4p+1=4.\left(3k+1\right)+1=12k+4+1=12k+5\)( là số nguyên tố)
\(\Rightarrow2p+1=2\left(3k+1\right)+1=6k+2+1=6k+3=3\left(2k+1\right)⋮3\)
Do k\(\in\)N*\(\Rightarrow3\left(2k+1\right)>0\)
\(\Rightarrow3\left(2k+1\right)\)là hợp sốVậy Nếu 4p+1 là SNT thì 2p+1 là hợp số\(p=7\Rightarrow2p+1=15\)(là hợp số)
\(p=11\Rightarrow\hept{\begin{cases}2p+1=23\\4p+1=45\left(hopso\right)\end{cases}}\)(hopso=hợp số)
Với p>11 mà p nguyên tố \(\Rightarrow p=11k+1;11k+2;....;11k+10\)
Với \(p=11k+5\)
\(\Rightarrow p=2\left(11k+5\right)+1=22k+11⋮11\)
Mà 22k+11>11=>2p+1 là hợp số
Bạn xét tiếp với \(=11k+1;..;11k+4;11k+6;...;11k+10\)vào 4p+1 để xem nó là hợp số hay nguyên tố
Kết luân: To be continue
Đặt 2p+1=n3 (n là số tự nhiên)
<=>2p=n3−1=(n−1)(n2+n+1)
vì p là số nguyên tố nên ta có
\(\hept{\begin{cases}n-1=2\\n^2+n+1=p\end{cases}}\)
hoặc
\(\hept{\begin{cases}n-1=p\\n^2+n+1=2\end{cases}}\)
hoặc
\(\hept{\begin{cases}n-1=1\\n^2+n+1=2p\end{cases}}\)
hoặc
\(\hept{\begin{cases}n-1=2p\\n^2+n+1=1\end{cases}}\)
=>p=13
HOẶC
Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2
+ Nếu p=3k+1 thì chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+ Vậy p có dạng 3k+2
Khi đó chia hết cho 3
Vậy 4p+1 là hợp số
tick nha
Tham khảo : https://olm.vn/hoi-dap/detail/19124427990
Hok tốt !
# Chi
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1; 3k+2
Nếu p = 3k+1 thì 2p+1 = 2(3k+1) +1 = 6k + 2 +1= 6k+3 = 3(2k+1) ( vì 3 \(⋮\)3 nên 3(k+1) \(⋮\)3 => 2p+1 là hợp số trái với đề bài)
Nếu p = 3k+2 thì 4p+1 =4(3k+2) +1 = 12k + 8+ 1 = 12k+9 = 3(4k+3) ( vì .........................................................................................)
Vậy...
#)Trả lời :
a) 73 là số nguyên tố, còn lại là hợp số
b) Tổng trên có Ư = 2 => Tổng trên là hợp số
c) Tổng trên có Ư = 5 => Tổng trên là hợp số
Cj giải giúp nà . (HIHI) Khỏi Mơn
a) 1431 , 635, 119 là hợp số
72 là số nguyên tố
b)5.6.7+8.9 là hợp số vì 210+72=282 mà 282 chia hết cho 1,2,3,...
c)4253+1422 là là hợp số
a, p>1 => 2p+1>3 và 4p+1>3 mà là 2 snt => không chia hết cho 3 (1)
xét 3 số 4p; 4p+1; 4p+2; có 1 số chia hết cho 3 (2)
Từ (1) và (2) => p chia hết cho 3 => p=3 do p nguyên tố. thử lại tm
b, p=2 tm. Nếu p>2 => p lẻ do nguyên tố => p+17 chẵn và lớn hơn 2 => p+17 hợp số => loại
vậy p=2
Xét 3 số tự nhiên liên tiếp : 4p , 4p+1 , 4p+2 ắt tìm được một số chia hết cho 3
Ta có p>5>3 , p là số nguyên tố => p không chia hết cho 3 => 4p không chia hết cho 3
Vì 2p+1 là số nguyên tố, p>5>3 => 2p+1 không chia hết cho 3 => 2(2p+1) = 4p + 2 không chia hết cho 3
Vậy ta có 4p + 1 chia hết cho 3 mà 4p + 1 > 3 => 4p + 1 là hợp số
p có dạng:3k+1;3k+2.
Với p=3k+1:
2p+1=6k+3 chia hết cho 3 và lớn hơn 3(loại)
Với p=3k+2:
4p+1=12k+8+1=12k+9 chia hết cho 3 và lớn hơn 3.
Vậy 4p+1 là hợp số
Chúc em học tốt^^