Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2a2-a+2 = 2a2+a - 2a-1+3=a(2a+1)-(2a+1)+3=(2a+1)(a-1)+3
Để A chia hết cho (2a+1) thì 3 phải chia hết cho 2a+1. Vậy:
+/ 2a+1=1 => a=0
+/ 2a+1=3 => a=1
giúp mình vs cảm ơn nhiều ❤ mọi người
M=\(\frac{\sqrt{x}+5}{\sqrt{x}+1}\)= \(\frac{\sqrt{x}+1+4}{\sqrt{x}+1}\)= 1+\(\frac{4}{\sqrt{x}+1}\)
Để M thuộc Z thì \(\frac{4}{\sqrt{x}+1}\) thuộc Z =>\(\sqrt{x}+1\) thuộc Ư(4)={ -1 ; 1 ; -2 ; 2 ; -4; 4 }
\(\sqrt{x}+1\) | -4 | -2 | -1 | 1 | 2 | 4 |
\(\sqrt{x}\) | -5 | -3 | -2 | 0 | 1 | 3 |
x | 25 | 9 | 4 | 0 | 1 | 9 |
KL : Với x thuộc {25 ; 9 ;4 ;0 ;1 } thì M thuộc Z
Chú ý nha bạn : Câu a và câu b như nhau vì m thuộc z <=> m có giá trị nguyên
a: Sửa đề: \(B=\left(\dfrac{2a}{a+3}+\dfrac{2}{3-a}+\dfrac{3}{a^2-9}\right):\dfrac{a+1}{a-3}\)
\(=\dfrac{2a^2-6a-2a-6+3}{\left(a-3\right)\left(a+3\right)}\cdot\dfrac{a-3}{a+1}=\dfrac{2a^2-8a-3}{\left(a+3\right)\left(a+1\right)}\)
b: |a|=2
=>a=2 hoặc a=-2
Khi a=2 thì \(B=\dfrac{2\cdot2^2-8\cdot2-3}{\left(2+3\right)\left(2+1\right)}=\dfrac{-11}{15}\)
Khi a=-2 thì \(B=\dfrac{2\cdot\left(-2\right)^2-8\cdot\left(-2\right)-3}{\left(-2+3\right)\left(-2+1\right)}=-21\)
ĐKXĐ : x + 2 \(\ne0\Rightarrow x\ne-2\)
Ta có A = \(\frac{1-x}{x+2}=\frac{-2-x+3}{x+2}=-1+\frac{3}{x+2}\)
Để A \(\inℤ\Rightarrow\frac{3}{x+2}\inℤ\Rightarrow3⋮x+2\Rightarrow x+2\inƯ\left(3\right)\)
=> \(x+2\in\left\{1;3;-1;-3\right\}\)
=> \(x\in\left\{-1;1;-3;-5\right\}\)
a^2(a+1)+2a(a+1)
=(a+1)(a^2+2a)
=a(a+1)(a+2)
đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.
a(2a-3)-2a(a+1)
= 2a^2 - 3a - 2a^2 - 2a
= - 5a chia hết cho 5
x^2 + 2x + 2
=(x+1)^2 +1
(x+1)^2 là số dương; 1 là số dương nên "cái kết quả trên" lớn hơn 0
-x^2 + 4x - 5
= - (x^2 - 4x + 5)
= - (x - 2)^2 + 1
vậy kết quả trên bé hơn 0
bài này mà gọi là bài lớp 8 hả còn dễ hơn bài lớp 6 em là hs lớp 6
ĐKXĐ: a \(\ne\)1
Ta có: P = \(\frac{2a}{a-1}=\frac{2\left(a-1\right)+2}{a-1}=2+\frac{2}{a-1}\)
Để P nguyên <=> \(\frac{2}{a-1}\) nguyên
<=> 2 \(⋮\)a - 1
<=> a - 1 \(\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng:
Vậy ....
\(P=\frac{2a}{a-1}\left(đkxđ:a\ne1\right)\)
\(P=\frac{2a}{a-1}=\frac{2\left(a-1\right)+2}{a-1}=2+\frac{2}{a-1}\)
Để P nguyên => \(\frac{2}{a-1}\)nguyên
=> \(2⋮a-1\) <=> \(a-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Cả 4 giá trị đều thỏa mãn ĐKXĐ
Vậy a thuộc các giá trị trên