P=(1−i)^2+(1−i)^4+(1−i)^6+...+(1−i)^2016+(1−i)^2018=a+bi . Hiệu
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 7 2017

Lời giải:

Ta có: \(P=(1-i)^2+(1-i)^4+....+(1-i)^{2018}\)

\(P(1-i)^2=(1-i)^4+(1-i)^6+...+(1-i)^{2020}\)

\(\Rightarrow P(1-i)^2-P=(1-i)^{2020}-(1-i)^2\)

Để ý \((1-i)^2=-2i\) \(\Rightarrow (1-i)^{2020}=-2^{1010}\)

\(\Rightarrow -P(2i+1)=-2^{1010}+2i\Rightarrow P=\frac{2^{1010}-4-i(2+2^{1011})}{5}\)

\(\Rightarrow a=\frac{2^{1010}-4}{5};b=\frac{-(2+2^{2011})}{5}\)

\(\Rightarrow 5(a-b)=3.2^{1010}-2\). Đáp án A

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải

Từ bảng biến thiên ta thấy ĐTHS có 2 điểm cực trị.

Điểm cực đại: \((-1;5)\)

Điểm cực tiểu: \((3;1)\)

Số km chạy được với 1 lít xăng của một loại xe oto là đại lượng ngẫu nhiên phân phối chuẩn. Bình thường một lít xăng trung bình chạy được 10km đường đối với loại xe này. Người ta đã thực hiện một cải tiến kỹ thuật đối với loại xe oto đó và thu được số km chạy dược với 1 lít xăng trong 25 lần như sau: Số km chạy...
Đọc tiếp

Số km chạy được với 1 lít xăng của một loại xe oto là đại lượng ngẫu nhiên phân phối chuẩn. Bình thường một lít xăng trung bình chạy được 10km đường đối với loại xe này. Người ta đã thực hiện một cải tiến kỹ thuật đối với loại xe oto đó và thu được số km chạy dược với 1 lít xăng trong 25 lần như sau:

Số km chạy được 9.6-9.8 9.8-10 10-10.2 10.2-10.4 10.4-10.6
Số lần 3 5 8 7 2

a, Với mức ý nghĩa 5% có thể nói việc cải tiến kỹ thuật trên đã tiết kiệm xăng cho oto hay không?

b, Với độ tin cậy 95% hãy ước lượng phương sai của số km loại oto chạy được với 1 lít xăng.

Biết rằng: Φ(0,5)=0,19146; Φ(1)=0,34134; Φ(1,5)=0,43319; Φ(2)=0,47725; u0,025=1,96; u0,05=1,65; \(t^{\left(15\right)}_{0,025}=2,131\); \(t_{0,05}^{\left(15\right)}=1,753\); \(t_{0,025}^{\left(24\right)}=2,064\);

\(x_a^{2\left(k\right)}\) 15 24 35 48 80 99
0,025 27,4884 39,3641 46,9792 71,4202 106,629 129,561
0,05 24,9958 36,6525 43,7729 67,5048 101,879 124,342
0,95 7,26094 13,8484 18,4926 34,7642 60,3915 77,9295
0.975 6,26214 12,4011 16,7908 32,3574 57,1532 74,2219
0
AH
Akai Haruma
Giáo viên
10 tháng 3 2018

Lời giải:

Khi \(x\neq 1\) thì hàm \(f(x)\) luôn là hàm sơ cấp xác định nên $f(x)$ liên tục tại mọi điểm \(x\neq 1\).

Do đó để hàm liên tục trên \(\mathbb{R}\Rightarrow \) chỉ cần xác định $a$ để hàm liên tục tại điểm $x=1$ là đủ.

Để $f(x)$ liên tục tại $x=1$ thì:

\(\lim_{x\to 1}f(x)=f(1)\)

\(\Leftrightarrow \lim_{x\to 1}\frac{x^3-4x^2+3}{x-1}=a+\frac{5}{2}\)

\(\Leftrightarrow \lim_{x\to 1}\frac{(x-1)(x^2-3x-3)}{x-1}=a+\frac{5}{2}\)

\(\Leftrightarrow \lim_{x\to 1}(x^2-3x-3)=a+\frac{5}{2}\)

\(\Leftrightarrow -5=a+\frac{5}{2}\Leftrightarrow a=\frac{-15}{2}\)

Đáp án B

a: Gọi số học sinh là x

Theo đề, ta có: \(x\in BC\left(16;28\right)\)

mà 100<=x<=150

nên x=112

27 tháng 1 2022

Số 9 đúng ko

26 tháng 2 2019

dễ nhg mik ko có time sr nhá

26 tháng 2 2019

bài này mk chỉ đố vui thôi

25 tháng 3 2020

Giá của x sản phẩn là:

x ( 120 -x ) = - x2 +120x 

Lợi nhuận còn lại:

\(-x^2+120x-C\left(x\right)=-x^2+120x-x^2-5x-300=-2x^2+115x-300\)