Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có A thuộc (P) <=> \(y_A=x^2_A\Rightarrow y_A=4\)Vậy A(-2;4)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2x-m^2+2m=0\)
\(\Delta=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)
Để pt có 2 nghiệm pb khi m khác 1
c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)
Vì x1 là nghiệm pt trên nên \(x_1^2=2x_1+m^2-2m\)
Thay vào ta được \(2x_1+m^2+2x_2=5m\)
\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)
\(\Rightarrow m^2-5m+4=0\Leftrightarrow m=1\left(ktm\right);m=4\left(tm\right)\)
b) x2-2x-m2+2m=0
Δ'= (-1)2+m2-2m= (m-1)2>0 thì m≠1
KL:....
c) với m≠1 thì PT có 2 nghiệm PB
C1. \(x_1=1-\sqrt{\left(m-1\right)^2}=1-\left|m-1\right|\)
tt. tính x2
C2.
Theo Viets: \(S=x_1+x_2=2;P=x_1x_2=-m^2+2m\)
Ta có: \(x_1^2+2x_2=3m\Rightarrow x_1^2=3m-2x_2\)
Từ \(S=x_1+x_2=2\Rightarrow x_2=2-x_1\)Thay vào P ta có:
\(P=x_1\left(2-x_1\right)=-m^2+2m\)
⇔2x1-x12=-m2+2m
⇔2x1- (3m-2x2)=-m2+2m (Thay x12=3m-2x2)
⇔2x1-3m+2x2=-m2+2m⇔2(x1+x2)=-m2+5m ⇔2.2=-m2+5m ⇔m=4 (TM) và m=1(KTM)
Vậy với m=4 thì .....
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-1\)\(\Leftrightarrow x^2-mx+1=0\)(*)
pt (*) có \(\Delta=\left(-m\right)^2-4.1.\left(-1\right)=m^2+4\)
Vì \(m^2+4>0\)nên \(\Delta>0\)hay pt (*) luôn có 2 nghiệm phân biệt, đồng nghĩa với việc (d) luôn cắt (P) tại 2 điểm phân biệt.
Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=1\end{cases}}\)
Như vậy ta có \(x_2\left(x_1^2+1\right)=3\)\(\Leftrightarrow x_2x_1^2+x_2=3\)\(\Leftrightarrow x_1+x_2=3\)\(\Rightarrow m=3\)\
Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thỏa mãn yêu cầu đề bài thì \(m=3\)
a: PTHĐGĐ là:
x^2-4x+4m^2+1=0
Δ=(-4)^2-4(4m^2+1)
=16-16m^2-4=-16m^2+12
Để (d) cắt (P) tại hai điểm phân biệt thì -16m^2+12>0
=>-16m^2>-12
=>m^2<3/4
=>\(-\dfrac{\sqrt{3}}{2}< m< \dfrac{\sqrt{3}}{2}\)
b: x1,x2 nguyên
=>x1+x2 nguyên và x2*x1 nguyên
=>4 nguyên và 4m^2+1 nguyên
=>4m^2 nguyên
=>m^2 nguyên
=>\(m=k^2\left(k\in Z\right)\)
Phương trình hoành độ giao điểm d và (P):
\(-2x^2=x-m\Leftrightarrow2x^2+x-m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=1+8m>0\Leftrightarrow m< -\dfrac{1}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{1}{2}\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)
\(x_1+x_2=x_1x_2\Leftrightarrow-\dfrac{1}{2}=-\dfrac{m}{2}\Leftrightarrow m=1\)
a: PTHĐGĐ là:
x^2+mx-m-2=0(1)
Khi m=2 thì (1) sẽ là
x^2+2x-2-2=0
=>x^2+2x-4=0
=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)
b: Δ=m^2-4(-m-2)
=m^2+4m+8
=(m+2)^2+4>0 với mọi x
=>(d) luôn cắt (P) tại hai điểm phân biệtx
x1^2+x2^2=7
=>(x1+x2)^2-2x1x2=7
=>(-m)^2-2(-m-2)=7
=>m^2+2m+4-7=0
=>m^2+2m-3=0
=>m=-3 hoặc m=1
Phương trình hoành độ giao điểm: x2−(1−2m)x+m2=0x2−(1−2m)x+m2=0
Δ=(1−2m)2−4m2=−4m+1>0⇒m>14Δ=(1−2m)2−4m2=−4m+1>0⇒m>14
Do x1x1 là nghiệm của pt nên
x21−(1−2m)x1+m2⇔x21=(1−2m)x1−m2x12−(1−2m)x1+m2⇔x12=(1−2m)x1−m2
Thế vào bài toán:
⇔((1−2m)x1−m2−x1)(2mx2+m2)+m4+5m=3⇔((1−2m)x1−m2−x1)(2mx2+m2)+m4+5m=3
⇔−(2mx1+m2)(2mx2+m2)+m4+5m−3=0⇔−(2mx1+m2)(2mx2+m2)+m4+5m−3=0
⇔−4m2x1x2−2m3(x1+x2)−m4+m4+5m−3=0⇔−4m2x1x2−2m3(x1+x2)−m4+m4+5m−3=0
⇔−4m2.m2−2m3(1−2m)+5m−3=0⇔−4m2.m2−2m3(1−2m)+5m−3=0
⇔2m3−5m+3=0⇔2m3−5m+3=0
⇔(m−1)(2m2+2m−3)=0⇒⎡⎣⎢⎢⎢m=1m=−1+7√2m=−1−7√2<14(l)
Phương trình hoành độ giao điểm: x2−(1−2m)x+m2=0x2−(1−2m)x+m2=0
Δ=(1−2m)2−4m2=−4m+1>0⇒m>14Δ=(1−2m)2−4m2=−4m+1>0⇒m>14
Do x1x1 là nghiệm của pt nên
x21−(1−2m)x1+m2⇔x21=(1−2m)x1−m2x12−(1−2m)x1+m2⇔x12=(1−2m)x1−m2
Thế vào bài toán:
⇔((1−2m)x1−m2−x1)(2mx2+m2)+m4+5m=3⇔((1−2m)x1−m2−x1)(2mx2+m2)+m4+5m=3
⇔−(2mx1+m2)(2mx2+m2)+m4+5m−3=0⇔−(2mx1+m2)(2mx2+m2)+m4+5m−3=0
⇔−4m2x1x2−2m3(x1+x2)−m4+m4+5m−3=0⇔−4m2x1x2−2m3(x1+x2)−m4+m4+5m−3=0
⇔−4m2.m2−2m3(1−2m)+5m−3=0⇔−4m2.m2−2m3(1−2m)+5m−3=0
⇔2m3−5m+3=0⇔2m3−5m+3=0
⇔(m−1)(2m2+2m−3)=0⇒ m=1 hoặc m=−1+7√2 hoặc m=−1−7√2<14(l)
Vậy ............................................
k cho mk nha !!!
có đáp án chưa ạ ?