Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Phương trình hoàng độ giao điểm của (d) và (P) là:
x2=3x+m2 <=> x2-3x-m2=0 (1)
\(\Delta=3^2-4.\left(-m^2\right)=9+4m^2>0\)với mọi m thuộc R
=> phương trình (1) có hai nghiệm phân biệt
=> (d) luôn cắt (p) tại hai điểm phân biệt.
b) Gọi x1,, x2 là hoành độ giao điểm ứng với y1, y2
Ta có : y1=3x1+m2=x12
y2=3x2+m2=x22
=> 3x1+m2+3x2+m2=11.x12.x22=> 3(x1+x2)+2m2=11(x1.x2)2
Áp dụng định lí viet
x1+x2=3
x1.x2=-m2
Thay vào giải. Em làm tiếp nhé!

có y=-x^2 =>(x1-x2)^2+(x2^2-x1^2)^2 =25
ok rồi sau đó tựbiến đổi nhé . mình lười lắm :))))
b) Đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt
\(\Leftrightarrow x^2+2x-m+1=0\)có 2 nghiệm phận biệt \(\Leftrightarrow\Delta'=m>0\)
theo đinh lý ziet : \(x_1+x_2=-2,x_1x_2=-m+1\)
có \(y_1=2x_1-m+1,y_2=2x^2-m+1=>y_1-y_2=2\left(x_1-x_2\right)\)
Nên : \(25=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=5\left(x_1-x_2\right)^2=>\left(x_1-x_2\right)=5\)
hay \(\left(x_1+x_2\right)^2-4x_1x_2=5=>4-4\left(-m+1\right)=5=>m=\frac{5}{4}\left(TM\right)\)

a) Thay A(1; -9) vào (d), ta có:
-9 = 3m + 1 - m2
<=> -9 - 3m - 1 + m2 = 0
<=> -10 - 3m + m2 = 0
<=> m = 5 hoặc m = -2
b) Lập phương trình hoành độ giao điểm:
x2 = 3mx + 1 - m2
<=> x2 - 3mx - 1 + m2 = 0
Để (d) cắt (P) tại hai điểm phân biệt <=> \(\Delta>0\)
<=> (-3m)2 - 4.1.(-1 + m2) = 0
<=> 9m2 + 4 - 4m2 > 0
<=> 5m2 + 4 > 0\(\forall m\)
Ta có: x1 + x2 = 2x1x2
Theo viet ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=3m\\x_1x_2=\frac{c}{a}=-1+m^2\end{cases}}\)
<=> 3m = 2(-1 + m2)
<=> 3m = -2 + m2
<=> 3m + 2 - m2 = 0
<=> \(x_{1;2}=\frac{3\pm\sqrt{17}}{2}\)
a) Phương trình hoành độ: x2 - 2x - m2 + 3 = 0
b) Gọi A(x1;y1); B(x2; y2)
=> y1 - y2 = x12 - x22 = 8
=> (x1 - x2)(x1 + x2) = 8 (1)
Theo hệ thức Vi - ét ta có: x1 + x2 = 2 (2) và x1 x2 = - m2 + 3 (3)
(1)(2) => x1 - x2 = 4 và x1 + x2 = 2 => x1 = 3 ; x2 = -1
Thay vào (3) => -3 = - m2 + 3 => m2 = 6 => m = \(\sqrt{6}\) hoặc m = - \(\sqrt{6}\) (Đối chiếu điều kiện của m ở câu a)
KL:....