Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) $y_M=\frac{-x_M^2}{2}=\frac{-(-3)^2}{2}=\frac{-9}{2}$
Đường thẳng $OM$ có dạng: $y=ax$
$\Rightarrow y_M=ax_M\Leftrightarrow \frac{-9}{2}=a.(-3)$
$\Rightarrow a=\frac{3}{2}$
Vậy ĐT $OM$ là: $y=\frac{3}{2}x$
b) Gọi PTĐT $CE$ có dạng $y=ax+b$
PT hoành độ giao điểm giữa $(P)$ và $CE$ là:
$\frac{-x^2}{2}-ax-b=0$
$\Leftrightarrow x^2+2ax+2b=0(*)$
$(P)$ và $CE$ cắt nhau tại 2 điểm có hoành độ $-1;2$ nghĩa là PT $(*)$ nhân $x=-1$ và $x=2$ là nghiệm
\(\Rightarrow \left\{\begin{matrix} 1-2a+2b=0\\ 4+4a+2b=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{-1}{2}\\ b=-1\end{matrix}\right.\)
Vậy PTĐT $CE$ có dạng $y=-\frac{1}{2}x-1$
Tọa độ điểm `A` có `x=2` và `in (d_1)`
`=>` Thay `x=2` vào `(d_1)` có: `y=2+2=4`
`=>A(2;4)`
Gọi ptr đường thẳng `(d_2)` có dạng: `y=ax + b`
Vì `(d_2) \bot (d_1)=>a.a'=-1`
`=>a.1=-1<=>a=-1`
Thay `A(2;4)` và `a=-1` vào `(d_2)` có:
`4=-1.2+b<=>b=6`
Vậy ptr đường thẳng `(d_2)` là: `y=-x+6`
1.
\(x=-1\Rightarrow y=1\Rightarrow A\left(-1;1\right)\)
\(x=2\Rightarrow y=4\Rightarrow B\left(2;4\right)\)
Phương trình đường thẳng AB có dạng \(y=ax+b\) đi qua A và B nên ta có hệ:
\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\Rightarrow y=x+2\left(AB\right)\)
2.
\(\left(d\right)//\left(AB\right)\Rightarrow x-y+c=0\left(d\right)\)
Phương trình hoành độ giao điểm của \(\left(d\right);\left(P\right)\):
\(x+c=x^2\)
\(\Leftrightarrow x^2-x-c=0\)
\(\Delta=1+4c=0\Leftrightarrow c=-\dfrac{1}{4}\)
\(\Rightarrow x-y-\dfrac{1}{4}=0\left(d\right)\)
- Thay x = -1 và x = 2 vào hàm số ( P ) ta được :
\(\left[{}\begin{matrix}y=1\\y=4\end{matrix}\right.\)
=> Đường thẳng AB đi qua 2 điểm ( -1; 1 ) ; ( 2 ; 4 )
- Gọi đường thẳng AB có dạng y = ax + b
- Thay hai điểm trên lần lượt vào phương trình đường thẳng ta được :
\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Vậy phương trình đường thẳng AB có dạng : y = x + 2 .
a, - Thay tọa độ hai điểm xA, xB vào (P) ta được : \(\left\{{}\begin{matrix}y_A=2\\y_B=\dfrac{1}{2}\end{matrix}\right.\)
=> Tọa độ 2 điểm A, B lần lượt là : \(\left(2;2\right),\left(-1;\dfrac{1}{2}\right)\) .
b, - Gọi phương trình đường thẳng AB có dạng : y = ax + b .
- Thay tọa độ A, B vào phương trình ta được hệ : \(\left\{{}\begin{matrix}2a+b=2\\-a+b=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
- Thay lại a, b vào phương trình ta được : \(y=\dfrac{1}{2}x+1\)
Vậy ...