Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của (d) và (P) là:
2x^2 = 2x + m <=> 2x^2 - 2x - m = 0
delta' = (-1)^2 - 2.(-m) = 1 + 2m
a) delta' > 0 <=> 1 + 2m > 0 <=> m > -1/2
b) delta' = 0 <=> 1 + 2m = 0 <=> m = -1/2
c) delta' = 0 <=> 1 + 2m < 0 <=> m < -1/2
Xét phương trình hoành độ giao điểm: \(2x^2=2x+m\Leftrightarrow2x^2-2x-m=0\left(1\right)\)
\(\Delta=4+8m\)
a) (d) và (P) cắt nhau tại hai điểm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow4+8m>0\Leftrightarrow m>-\dfrac{1}{2}\)
b) (d) tiếp xúc với (P) khi và chỉ khi PT (1) có nghiệm duy nhất
\(\Leftrightarrow\Delta=0\Leftrightarrow4+8m=0\Leftrightarrow m=-\dfrac{1}{2}\)
c) (d) không cắt (P) khi và chỉ khi PT (1) vô nghiệm
\(\Leftrightarrow\Delta< 0\Leftrightarrow4+8m< 0\Leftrightarrow m< -\dfrac{1}{2}\)
Xét pt hoành độ gđ của (P) và (d) có:
\(x^2=mx+m+3\)
\(\Leftrightarrow x^2-mx-m-3=0\) (I)
Để (d) cắt (P) tại hai điểm pb ở bên phải trục tung
\(\Leftrightarrow\) Pt (I) có hai nghiệm dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m+12>0\left(lđ\right)\\m>0\\-m-3>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< -3\end{matrix}\right.\)\(\Rightarrow m\in\varnothing\)
Vậy...
Xét pt hoành độ gđ của parabol và d có:
\(x^2=x+m-1\)
\(\Leftrightarrow x^2-x+1-m=0\) (1)
Để (P) và (d) cắt nhau tại hai điểm pb bên trái trục tung
\(\Leftrightarrow\) Pt (1) có hai nghiệm âm pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S=1< 0\left(vl\right)\\P=1-m>0\end{matrix}\right.\)\(\Rightarrow\) Không tồn tại m để (d) cắt (P) tại hai điểm pb ở bên trái trục tung
Vậy...
Phương trình hoành độ giao điểm là:
\(x^2-x-m+1=0\)
a=1; b=-1; c=-m+1
\(\Delta=b^2-4ac\)
\(=\left(-1\right)^2-4\left(-m+1\right)\)
\(=1+4m-4\)
=4m-3
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow m>\dfrac{3}{4}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{1}=1\\x_1x_2=\dfrac{c}{a}=\dfrac{-m+1}{1}=-m+1\end{matrix}\right.\)
Để (d) cắt (P) tại hai điểm phân biệt nằm ở bên trái trục tung thì
\(\left\{{}\begin{matrix}m>\dfrac{3}{4}\\x_1+x_2< 0\left(loại\right)\\x_1x_2>0\end{matrix}\right.\)
Vậy: \(m\in\varnothing\)
a: PTHĐGĐ là:
x^2-2x-|m|-1=0
a*c=-|m|-1<0
=>(d)luôn cắt (P) tại hai điểm phân biệt
b: Bạn bổ sung lại đề đi bạn
\(\Leftrightarrow\left(-3\right)^2-4\cdot\left(-1\right)\cdot\left(-m\right)>0\)
=>9-4m>0
=>4m<9
hay m<9/4
Phương trình hoành độ giao điểm là:
\(-x^2-3x-m=0\)
\(\Leftrightarrow x^2+3x+m=0\)
Để (P) cắt (d) tại hai điểm phân biệt thì 9-4m>0
=>4m<9
hay m<9/4
Hnh oộ giao điểm thỏa mãn pt
\(x^2+3x+m=0\)
\(\Delta=9-4m>0\Leftrightarrow m< \dfrac{9}{4}\)
Vậy với m < 9/4 thì pt có 2 nghiệm pb
hay (P) cắt (d) tại 2 điểm pb
1: PTHĐGĐ là:
x^2-x-m+1=0(1)
Δ=(-1)^2-4(-m+1)=1+4m-4=4m-3
Để (P) cắt (d) tại hai điểm phân biệt thì 4m-3>0
=>m>3/4
Để (1) có hai nghiệm dương phân biệt thì m>3/4 và 1>0 và -m+1>0
=>m>3/4 và -m>-1
=>3/4<m<1
Phương trình hoành độ giao điểm là:
\(3x^2=2x-m\)
\(\Leftrightarrow3x^2-2x+m=0\)
\(\Delta=\left(-2\right)^2-4\cdot3\cdot m\)
\(\Leftrightarrow\Delta=4-12m=-12m+4\)
Khi \(\Delta>0\) thì Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1\cdot x_2=\dfrac{m}{3}\\x_1+x_2=\dfrac{2}{3}\end{matrix}\right.\)
Để (d) cắt (P) tại hai điểm phân biệt ở bên phải Oy thì phương trình hoành độ giao điểm của (P) và (d) có hai nghiệm phân biệt cùng dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\x_1\cdot x_2>0\\x_1+x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-12m+4\ge0\\\dfrac{m}{3}>0\\\dfrac{2}{3}>0\left(đúng\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{1}{3}\\m>0\end{matrix}\right.\Leftrightarrow0< m\le\dfrac{1}{3}\)
hình như là anh sai chỗ phải Δ>0 để 2 nghiệm phân biệt chứ còn Δ≥0 thì nó có thể sẽ thành nghiệm kép mất