Cho (P): y = 2x².

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Bài 1 ( của toán lớp 10 mà )

Ta có : ( P )  đi qua điểm A nên thay x = 4 ; y = 5 vào ( P ) , ta được : 

           5 = a . 42 + b . 4 + c 

          5 = 16a     +  4b   + c 

         -c = 16a + 4b - 5 

   => c = -16a - 4b + 5             ( * )  

( P ) có đỉnh là  I(2;1)  

=> \(\hept{\begin{cases}-\frac{b}{2a}=2\\-\frac{\Delta}{4a}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-b=4a\\-\frac{\left(b^2-4ac\right)}{4a}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\b^2-4ac=-4a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\b^2-4a.\left(-16a-4b+5\right)=-4a\end{cases}}\)   ( c = - 16a -4b + 5 ) mình chứng minh ở trên nhé 

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\left(-4a\right)^2-4a.\left(-16a-4\left(-4a\right)+5\right)=-4a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\16a^2+48a^2-48a^2-20a+4a=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\16a^2-16a=0\end{cases}}\) ( ở bước này bạn có thể tính bằng tay hoặc dùng máy tính nha : more 5 - 3 ) 

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\a=1\left(nhan\right);a=0\left(loai\right)\end{cases}}\) ( a = 0 thì loại ; vì trong phương trình bậc 2 thì a phải khác 0 ) 

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-4.\left(1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-4\end{cases}}\) 

Thay a = 1 và b = -4 vào phương trình   ( * )  ta được : 

c = -16 . 1 - 4 .( -4 ) +5 = 5 

vậy ( P ) là \(y=x^2-4x+5\)

bảng biến thiên :

 

bạn tự vẽ (P) nha , quá dễ mà 

BÀI 2 : \(\forall x\in R\) có nghĩa là vô số nghiệm 

\(\left(m^2-1\right)x+2m=5x-2v6\)

\(\Leftrightarrow\left(m^2-1\right)x-5x=2v6-2m\)

\(\Leftrightarrow\left(m^2-1-5\right)x=2v6-2m\)

\(\Leftrightarrow\left(m^2-6\right)x=2v6-2m\)

Phương trình có nghiệm \(\forall x\in R\) \(\Leftrightarrow0x=0\)

\(\Leftrightarrow\hept{\begin{cases}m^2-6=0\\2v6-2m=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\pm v6\\m=v6\end{cases}}\)

Vậy m = v6 thì phương trình có nghiệm đúng \(\forall x\in R\) ( bởi vì m = v6 và m =+-v6 nên ta chỉ lấy phần chung thôi ,lấy v6 ,loại bỏ -v6)

Bài 3 :

a )

\(\Delta=b^2-4ac\)

\(=\left[-2\left(2m-3\right)\right]^2-4.\left(2m-1\right).\left(2m+5\right)\)

\(=4.\left(4m^2-12m+9\right)-\left(8m-4\right)\left(2m+5\right)\)

\(=16m^2-12m+36-\left(16m^2+40m-8m-20\right)\)

\(=16m^2-12m+36-16m^2-40m+8m+20\)

\(=-44m+56\)

phương trình có nghiệm \(\Leftrightarrow\Delta\ge0\)

\(\Leftrightarrow-44m+56\ge0\)

\(\Leftrightarrow-44m\ge-56\)

\(\Leftrightarrow m\le\frac{14}{11}\)

Vậy \(m\le\frac{14}{11}\) thì phương trình có nghiệm  ( m bé hơn hoặc bằng 14/11 nha ) 

b ) x1 = x2 có nghĩa là nghiệm kép nha  ( có 2 nghiệm phân biệt x1,x2 ; đề bài đang đánh lừa bạn đấy ) 

phương trình có 2 nghiệm x1 = x2 \(\Leftrightarrow\Delta=0\)

\(\Leftrightarrow-44m+56=0\)

\(\Leftrightarrow m==\frac{14}{11}\)

Học tốt !!!!!

                           

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\orbr{\begin{cases}a=0\\16a-16=0\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\orbr{\begin{cases}a=0\\16a-16=0\end{cases}}\end{cases}}\)

3 tháng 2 2018

\(VT=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

3 tháng 2 2018

không làm b nhé

7 tháng 5 2020

Ta có \(x^2-\left(7+y\right)x+6+2y=0\Leftrightarrow y\left(x-2\right)=x^2-7x+6\)

Rõ ràng x=2 không thể là nghiệm nên chia cả 2 vế cho x-2 ta được

\(y=\frac{x^2-7x+6}{x-2}=\left(x-5\right)+\frac{-4}{x-2}\)

Do x,y nguyên nên x-2 là Ư(-4) mà \(Ư_{\left(-4\right)}=\left\{-4;-2;-1;1;2;4\right\}\)

ta có bảng

x-2-4-2-1124
x-201346
y0-3-60-36

đối chiếu điều kiện ở đề bài thì các cặp 

(x;y)={(1;0);(0;3);(-2;-6);(6;0);(4;-3);(3;-6)}

26 tháng 8 2021

sau bạn đăng tách ra nhé @@ nhìn như này lag lắm 

Đặt d1 : y = ax + b 

a, Vì d1 có hệ số gọc bằng -2 => a = -2 

d1 đi qua A(3;5) <=> -2.3 + b = 5 <=> b = 5 + 6 = 11 

Vậy y = -2x + 11

b, d1 cắt trục tung tại tung độ bằng -3 => y = -3 ; x = 0 => b = -3 

d1 cắt trục hoành tại hoành độ bằng 2 => x = 2 ; y = 0 

2a -3 = 0 <=> a = 3/2 

c, d1 đi qua M(2;3) <=> 2a + b = 3 (1) 

d1 đi qua N(-1;4) <=> -a + b = 4 (2) 

Tứ (1) ; (2) ta có hệ : \(\hept{\begin{cases}2a+b=3\\-a+b=4\end{cases}}\Rightarrow a=-\frac{1}{3};b=\frac{11}{3}\)

d, tương tự 

e, Gọi d1 đi qua gốc tọa độ có dạng y = ax 

d1 đi qua B(-1;3) <=> -a = 3 <=> a = -3 

=> 3 + b = 3 <=> b = 0 

f, d1 // y = 3 - 2x <=> \(\hept{\begin{cases}a=-2\\b\ne3\end{cases}}\)

d1 đi qua C(-2;1) <=> 4 + b = 1 <=> b = -3 (tm) 

g, d1 \(\perp\)y = 1/3x - 7/3 <=> \(\frac{a}{3}=-1\Rightarrow a=-3\)

d1 cắt trục tung tại tung độ bằng -4 => y = -4 ; x = 0 => b = -4 

27 tháng 8 2021

mình cảm ơn nhiều nhaaaa

9 tháng 12 2021

b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)

hay −x−4=3x+2−x−4=3x+2

⇔−x−4−3x−2=0⇔−x−4−3x−2=0

⇔−4x−6=0⇔−4x−6=0

⇔−4x=6⇔−4x=6

hay x=−32x=−32

Thay x=−32x=−32 vào hàm số y=-x-4, ta được: 

y=−(−32)−4=32−4=32−82=−52y=−(−32)−4=32−4=32−82=−52

Vậy: A(−32;−52)A(−32;−52)

c) Vì (D2) song song với (D) nên a=-1

hay (D2): y=-x+b

Vì (D2) đi qua điểm B(-2;5)

nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được: