Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt phép chia ,để phép chia là phép chia hết thì dư=0 .....=>m=-3
hoặc có thể dễ nhận thấy m=-3 sẽ có hđt x^3+y^3+z^3-3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-zx) chia hết cho (x+y+z)
- Quẵng đường viên bi A dơi trong 4s là: \(S_{A\left(4s\right)}=\frac{1}{2}\cdot10\cdot4^2=80\left(m\right)\)
- Vì sau khi bi A rơi được 4 giây thì khoảng cách giữa hai viên bi là 35m nên quãng đường bi B dơi là: \(S_{B\left(4-\Delta t\right)}=80-35=45\left(m\right)\)
- Suy ra: \(S_{B\left(4-\Delta t\right)}=\frac{1}{2}\cdot10\cdot\left(4-\Delta t\right)^2=45\\ \Rightarrow\left(4-\Delta t\right)^2=9\\ \Rightarrow4-\Delta t=3\Rightarrow\Delta t=1\left(s\right)\)
B1:
pt <=> \(\dfrac{3x^2}{10}+\dfrac{2y^2}{15}+\dfrac{z^2}{20}=0\)
<=> x = y = z = 0
B2: Áp dụng bđt Cô-si:
\(\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)\ge2+2=4\)
Dấu "=" xảy ra <=> x2 = y2 = 1
2)
Theo hệ quả của bất đẳng thức Cauchy ta có
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Do \(x^2+y^2+z^2\le3\)
\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)
\(\Rightarrow1\ge xy+yz+xz\)
\(\Rightarrow4\ge xy+yz+xz+3\)
\(\Rightarrow\dfrac{9}{4}\le\dfrac{9}{3+xy+xz+yz}\) ( 1 )
Ta có \(C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)
Áp dụng bất đẳng thức cộng mẫu số
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{4}\)
Vậy \(C_{min}=\dfrac{9}{4}\)
Dấu " = " xảy ra khi \(x=y=z=\sqrt{\dfrac{1}{3}}\)
Đặt \(\left\{{}\begin{matrix}xy=a\\yz=b\\zx=c\end{matrix}\right.\)
Giả thiết \(\Leftrightarrow a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+c^3-3abc-3a^2b-3ab^2=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)
+) TH1: \(a+b+c=0\Leftrightarrow xy+yz+zx=0\)
Biến đổi linh tinh P chắc là ra :D
+) TH2: \(a=b=c\Leftrightarrow xy=yz=zx\Leftrightarrow x=y=z\)
\(P=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}=\frac{2y}{y}\cdot\frac{2z}{z}\cdot\frac{2x}{x}=2\cdot2\cdot2=8\)
Vậy....
TH1: \(xy+yz+zx=0\)
\(\Leftrightarrow z\left(x+y\right)=-xy\)
\(\Leftrightarrow x+y=\frac{-xy}{z}\)
Vì vai trò của x, y, z là như nhau nên ta cũng có :
\(\left\{{}\begin{matrix}y+z=\frac{-yz}{x}\\z+x=\frac{-zx}{y}\end{matrix}\right.\)
Ta có \(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(P=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}\)
\(P=\frac{\frac{-xy}{z}\cdot\frac{-yz}{x}\cdot\frac{-zx}{y}}{xyz}\)
\(P=\frac{\frac{-x^2y^2z^2}{xyz}}{xyz}\)
\(P=\frac{-xyz}{xyz}=-1\)
Vậy....
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x^3+3x^2y+3xy^2+y^3\right)+z^3-3x^2y-3xy^2-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
Vì \(x+y+z\ne0\) nên \(x^2+y^2+z^2-xy-yz-xz=0\)
\(\Leftrightarrow\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]=0\)
\(\Rightarrow x=y=z\) thay vào P ta được :
\(P=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=2.2.2=8\)
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm ta có:
\(x^4+x^4+y^4+z^4\geq4\sqrt[4]{x^8y^4z^4}=4|x^2yz|\ge 4x^2yz\)
\(x^4+y^4+y^4+z^4\geq 4xy^2z\)
\(x^4+y^4+z^4+z^4\geq 4xyz^2\)
Cộng theo vế và rút gọn:
\(\Rightarrow x^4+y^4+z^4\geq xyz(x+y+z)=3xyz\)
Dấu "=" xảy ra khi \(x=y=z\). Kết hợp với $x+y+z=3$ suy ra $x=y=z=1$
Do đó:
\(M=x^{2018}+y^{2019}+z^{2020}=1+1+1=3\)