Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐK: $x\geq 0$
Để $|P|>P$ thì $P<0$
$\Leftrightarrow \frac{\sqrt{x}-1}{\sqrt{x}+2}<0$
$\Leftrightarrow \sqrt{x}-1<0$
$\Leftrightarrow 0\leq x< 1$
a) \(\frac{\sqrt{x}-2}{3\sqrt{x}}=-1\)
=> \(-3\sqrt{x}=\sqrt{x}-2\)
=> \(4\sqrt{x}=2\)
=> \(x=\frac{1}{4}\)
b) \(\frac{\sqrt{x}-2}{3\sqrt{x}}
đầu tiên bn tính đenta
cho đenta lớn hơn hoặc = 0 thì pt có nghiệm
b, từ x1-2x2=5
=> x1=5+2x2
chứng minh đenta lớn hơn 0
theo hệ thức viet tính đc x1+x2=..
x1*x2=....
thay vào cái 1 rồi vào 2 là đc
2)
a)Thay m = 2 vào hệ, ta được :
HPT :\(\hept{\begin{cases}2x+4y=2+1\\x+\left(2+1\right)y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+4y=3\left(^∗\right)\\x+3y=2\left(^∗^∗\right)\end{cases}}\)
Lấy (*) trừ (**), ta được :
\(2x+4y-x-3y=3-2\)
\(\Leftrightarrow x+y=1\)(***)
Lấy (**) trừ (***), ta được :
\(\Leftrightarrow x+3y-x-y=2-1\)
\(\Leftrightarrow2y=1\)
\(\Leftrightarrow y=\frac{1}{2}\)
\(\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\)
Vậy với \(m=2\Leftrightarrow\left(x;y\right)\in\left\{\frac{1}{2};\frac{1}{2}\right\}\)
b) Thay \(\left(x;y\right)=\left(2;-1\right)\)vào hệ, ta được :
HPT :\(\hept{\begin{cases}2m-2m=m+1\\2-\left(m+1\right)=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m+1=0\\m+1=0\end{cases}}\)
\(\Leftrightarrow m=-1\)
Vậy với \(\left(x,y\right)=\left(2;-1\right)\Leftrightarrow m=-1\)
a) \(đk:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b) \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{2}+1\right)-1}{\sqrt{2}+1-2}=\dfrac{2\sqrt{2}+1}{\sqrt{2}-1}\)
c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{1}{2}\)
\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}-2\Leftrightarrow3\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
d) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}>2\)
\(\Leftrightarrow2\sqrt{x}-1>2\sqrt{x}-4\Leftrightarrow-1>-4\left(đúng\forall x\right)\)
e) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}-2}=2+\dfrac{3}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(x\ge0\)
\(\Rightarrow x\in\left\{1;9;25\right\}\)
a, Vì pt trên nhận \(4+\sqrt{2019}\) là nghiệm nên
\(\left(4+\sqrt{2019}\right)^2-\left(2m+2\right)\left(4+\sqrt{2019}\right)+m^2+2m=0\)
\(\Leftrightarrow2035+8\sqrt{2019}-2m\left(4+\sqrt{2019}\right)-8-2\sqrt{2019}+m^2+2m=0\)
\(\Leftrightarrow m^2-2m\left(3+\sqrt{2019}\right)+6\sqrt{2019}+2027=0\)
Có \(\Delta'=\left(3+\sqrt{2019}\right)^2-6\sqrt{2019}-2027=1>0\)
Nên pt có 2 nghiệm \(m=\frac{3+\sqrt{2019}-1}{1}=2+\sqrt{2019}\)
hoặc \(m=\frac{3+\sqrt{2019}+1}{1}=4+\sqrt{2019}\)
b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)
Theo đề \(x_1-x_2=m^2+2\left(3\right)\)
Lấy (1) + (3) theo từng vế được
\(2x_1=m^2+2m+5\)
\(\Rightarrow x_1=\frac{m^2+2m+5}{2}\)
\(\Rightarrow x_2=2m+2-x_1=...=-\frac{\left(m-1\right)^2}{2}\)
Thay vào (2) được \(\frac{m^2+2m+5}{2}.\frac{-\left(m-1\right)^2}{2}=m^2+2m\)
\(\Leftrightarrow-\left(m^2+2m+5\right)\left(m-1\right)^2=4m^2+8m\)
hmmm
Giao luu
\(A=\frac{2x\left(x-3\right)+\left(x+3\right)\left(x+1\right)+\left(11x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(A=\frac{2x^2-6x+x^2+4x+3+11x-3}{\left(x+3\right)\left(x-3\right)}=\frac{3x^2+9x}{\left(x+3\right)\left(x-3\right)}=\frac{3x}{x-3}\)
b)\(A=\frac{3x}{x-3}-2< 0\Leftrightarrow\frac{3x-2x+6}{x-3}=\frac{x+6}{x-3}=1+\frac{9}{x-3}\) \(-6< x< 3\)
c) x-3=U(9)=(-9,-3,-1,1,3,9)
x=(-6,0,2,4,6,12)
Để \(|P|>P\)
=> P > 0
<=> \(\frac{\sqrt{x}-1}{\sqrt{x}+2}>0\)
<=> \(\sqrt{x}-1>0\) ( vì \(\sqrt{x}+2>0\))
<=> \(\sqrt{x}>1\)
<=> \(x>1\)
Kết hợp cả ĐKXĐ đề bài cho rồi kết luận nhé