\(p\) và \(p+4\) là các số nguyên tố 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2022

Vì p là số nguyên tố, p>3 => p=3k+1 hoặc p=3k+2

Nếu \(p=3k+2=>\)\(p+4=3k+2+4=3k+6 \)(loại vì p+4 cũng là số nguyên tố)

Nếu \( p=3k+1=> \)\(p+4=3k+1+4=3k+5\)( thỏa mãn)

\(=>p+8=3k+1+8=3k+9\) là hợp số (đpcm)

Do \(p\) là số nguyên tố và \(p>3\) nên \(p\) chia 3 dư 1 hoặc dư 2.Xét:

⇌Nếu \(p\) chia 3 dư 1 thì \(p+8\) chia hết cho 3 và \(p+8>3\),suy ra \(p+8\) là hợp số.

⇌Nếu \(p\) chia 3 dư 2 thì \(p+4\) chia hết cho 3 và \(p+4>3\),khi đó \(p+4\) không là số nguyên tố(không thỏa mãn).

Vậy \(p\) và \(p+4\) là các số nguyên tố \(\left(p>3\right)\) thì \(p+8\) là hợp số.

3 tháng 12 2015

1.p=7          2.p=3             3.p=5

nha bạn

3 tháng 12 2015

Bài 1 :

a) Thử p = 2 => p + 2 = 4 là hợp số => p = 2 không thỏa mãn

Thử p = 3 => p + 2 = 5 và p + 4 = 7 là số nguyên tố => p = 3 thõa mãn 

Xét p > 3 => p không chia hết cho 3 . Có 2 khả năng

+) Nếu p = 3k + 1 => p + 2 = 3k + 3 chia hết cho 3 => p + 2 là hợp số

+) Nếu p = 3k + 2 => p + 4 = 3k + 6 chia hết cho 3 => p + 4 là hợp số

Chứng tỏ mọi p > 3 đều không thỏa mãn . Vậy p = 3 

b) Thử p = 2 => p + 2 = 4 là hợp số => p = 2 không thỏa mãn

Thử p = 3 => p + 2 = 5 và p + 10 = 13 là số nguyên tố => p = 3 thỏa mãn

Xét p > 3 => p không chia hết cho 3 . Có 2 khả năng 

+) Nếu p = 3k + 1 => p + 2 = 3k + 3 chia hết cho 3 => p + 2 là hợp số

+) Nếu p = 3k + 2 => p + 10 = 3k + 12 chia hết cho 3 => p + 10 là hợp số

Chứng tỏ mọi p > 3 đều không thỏa mãn . Vậy p = 3

c) Thử p = 2 => p + 2 = 4 là hợp số => p = 2 không thỏa mãn

Thử p = 3 => p + 6 = 9 là hợp số => p = 3 không thỏa mãn

Thử p = 5 > p + 2 = 7 ; p + 6 = 11 và p + 8 = 13 là số nguyên tố => p = 5 thỏa mãn

Xét p > 5 => p không chia hết cho 5 . Có 4 khả năng 

... bạn làm tiếp

15 tháng 8 2018

1) trả lời

4253 + 1422 =5775

mà 5775 chia hết cho 3;5

=>nó là hợp số

15 tháng 8 2018

mình xin lỗi ấn nhầm bây giờ mk giải tiếp

giải

2) để 5x + 7 là số nguyên tố

=>5x+7 chia hết cho 5x+7 và 1

=>x thuộc (2;6)

3) trả lời 

n.(n+1) là hợp số bởi vì 

nếu n+1 là số lẻ=>n là số chẵn mà chẵn nhân với lẻ lại được số chẵn chia hết cho 2

nếu n+1 là số chẵn =>n là số lẻ mà lẻ nhân chẵn sẽ được số chẵn chia hết cho 2

mình xin lỗi mình chỉ làm dc thế thôi nhé, nếu bạn ko k thi thôi, ko sao

chào bạn

26 tháng 4 2018

a) (x+5)+(x+10)+.........+(x+60)=450 

   12x +(5+10+.........+60)=450

  12x+390=450

   12x=60

    x=5

26 tháng 4 2018

b) Gọi n là thương của phép chia a cho 54;              =>54n+38=252+r                  =>r-2 chia hết cho 54

r là dư của phép chia a cho 18 (n,r thuộc N;r<14)    =>54n =214+r                      =>r-2=0

=>a=54n + 38                                                       =>n=(214+r):54                     =>r =2

   a=18x14+r                                                          =>214+r chia hết cho 54       =>a=18x14+2=254                                    

=>54n+38=18x14+r                                               =>216+r-2 chia hết cho 54

18 tháng 11 2018

A=2.25-2.24

A=2 => A là số nguyên tố

3 tháng 4 2018

Trả lời

a)  Vì p là số nguyên tố lớn hơn 3

\(\Rightarrow\)p có dạng 3k+1 hoặc 3k+2 (k\(\in\)N*)

Với p=3k+1 \(\Rightarrow p+4=3k+1+4=3k+5\)là  SNT => chọn

Với p=3k+2 \(\Rightarrow p+4=3k+2+4=3k+6\) chia hết cho 3 và lớn hơn 3

                    \(\Rightarrow\)p+4 là hợp số => Loại

\(\Rightarrow\)p=3k+1 thì \(p+8=3k+1+8=3k+9\)=> p+8 là hợp số => Chọn

b)Ta có abcd=1000a+100b+10c+d

                     =1000a+96b+8c+(4b+2c+d)

Ta thấy: 1000a chia hết cho 8

              96b chia hết cho 8

              8c chia hết cho 8

Theo đề ra ta có: 4b+2c+d chia hết cho 8

=> 1000a+96b+8c+(4b+2c+d) chia hết cho 8

=> abcd chia hết cho 8

Vậy nếu (d+2c+4b) chia hết cho 8 thì abcd chia hết cho 8

           

3 tháng 4 2018

  Câu 1:Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

b, chịu

6 tháng 3 2021

Giả sử \(a< b< c\)thì \(a\ge2\)\(;\)\(b\ge3\)\(;\)\(c\ge5\)

Ta có:

\(\frac{1}{\left[a,b\right]}=\frac{1}{ab}\le\frac{1}{6}\)\(;\)\(\frac{1}{\left[b,c\right]}=\frac{1}{bc}\le\frac{1}{15}\)\(;\)\(\frac{1}{\left[c,a\right]}=\frac{1}{ca}\le\frac{1}{10}\)

Do đó: \(\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\)\(\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\)

\(\Rightarrow\)\(\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\)\(\frac{1}{3}\)\(\rightarrowĐPCM\)

18 tháng 5 2017

Gọi \(d=ƯCLN\left(n+1;3n+4\right)\) (\(d\in N\)*)

\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\3n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3n+3⋮d\\3n+4⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\)

\(d\in N\)*; \(1⋮d\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n+1;3n+4\right)=1\)

\(\Rightarrow n+1;3n+4\) nguyên tố cùng nhau với mọi n

24 tháng 12 2018

Tham khảo : Cho p1; p2 là 2 số nguyên tố lẻ liên tiếp (p1< p2). Chứng minh (p1 + p2) /2 là hợp số? | Yahoo Hỏi & Đáp

24 tháng 12 2018

Giả sử \(\frac{P1+P2}{2}\) là số nguyên tố

Khi đó : \(P1+P2=2d\) ( với d là số nguyên tố )

Vì P1,P2 là 2 số nguyên tố liên tiếp và \(P1>P2\)

\(\Rightarrow P1>d>P2\)

Do đó : giữa P1 và P2 còn 1 số nguyên tố nữa ( mâu thuẫn vs đề ra )

Vậy \(\frac{P1+P2}{2}\) là hợp số.

16 tháng 7 2016

Nếu p = 3k hay p = 3 thì 8p-1 = 23 là số nguyên tố. 8p+1 = 25 là hợp số.

Nếu p = 3k+1 thì 8p +1 = 8(3k+1) + 1 = 24k + 9 là hợp số.

Nếu p = 3k + 2 thì 8p -1 = 8(3k+2 ) - 1 = 24k + 15 là hợp số không thể là số nguyên tố.

Bài toán được chứng minh.

16 tháng 7 2016

Xét p dưới dạng : 3k (khi đó p=3), 3k+1,3k+2(k∈N).

Dạng thứ ba không thỏa mãn đề bài (vì khi đó 8p−1 là hợp số), hai dạng trên đều cho 8p+1 là hợp số.