K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

Nếu p=3k+2 thì \(4p+1=4\left(3k+2\right)+1=12k+9=3\left(4k+3\right)⋮3\)

=>4p+1 là hợp số

=>Loại

=>p=3k+1

\(2p+1=2\left(3k+1\right)+1=6k+2+1=6k+3=3\left(2k+1\right)⋮3\)

17 tháng 12 2023
Vì p là số nguyên tố lớn hơn 3 nên p \cancel{vdots} 3 ⇒ p có dạng 3k + 1 hoặc 3k + 2 ( k ∈ N** ) Xét p = 3k + 1 ⇒ 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 vdots 3 ( là hợp số ) ( Loại ) ⇒ p có dạng 3k + 2 ⇒ 4p + 1 = 4 . ( 3k  +2 ) + 1 = 12k + 8 + 1 = 12k + 9 vdots 3 ( là hợp số ) Vậy , 4p + 1 là hợp số .  
24 tháng 1 2017

\(\hept{\begin{cases}p>3\\2p+1\end{cases}\Rightarrow p=3k+2}\left(k\ge1\right)\)nếu là 3k+1=> 2p+1=6k+3 không nguyên tố

với p=3k+2=> 4p+1=4(3k+2)+1=12k+9 luôn chia hết cho 3=> Hợp số => dpcm

12 tháng 1 2018

1. Có : 51^n có tận cùng là 1

2014^2016 = (2014^2)^1008 = ....6^2018 = ....6 có tận cùng là 6

=> 2014^2016-51^n có tận cùng là 6-1=5 => 2014^2016-51^n chia hết cho 5

2. Gọi ƯCLN (21n+4;14n+3) = d ( d thuộc N sao )

=> 21n+4 và 14n+3 đều chia hết cho d

=> 2.(21n+4) và 3.(14n+3) đều chia hết cho d

=> 42n+8 và 42n+9 đều chia hết cho d

=> 42n+9-(42n+8) chia hết cho d

=> 1 chia hết cho d

=> d=1

=> ƯCLN (21n+4;14n+3) = 1

3.

p nguyên tố > 3 nên p ko chia hết cho 3 

 Nếu p chia 3 dư 1 => 2p chia 3 dư 2 => 2p+1 chia hết cho 3

Mà 2p+1 > 3 => 2p+1 là hợp số

=> để 2p+1 là số nguyên tố thì p chia 3 dư 2

=> 4p chia 3 dư 8 hay 4p chia 3 dư 2

=> 4p+1 chia hết cho 3

Mà 4p+1 > 3 => 4p+1 là hợp số

=> ĐPCM

Tk mk nha

12 tháng 1 2018

câu 2 đâu

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:

Vì $p$ là số nguyên tố lớn hơn 3 nên $p$ không chia hết cho 3.

Mà $p$ lẻ nên $p=6k+1$ hoặc $6k+5$ với $k$ tự nhiên.

TH1: $p=6k+1$ thì:

$p^2-1=(6k+1)^2-1=6k(6k+2)=12k(3k+1)$

Nếu $k$ lẻ thì $3k+1$ chẵn.

$\Rightarrow p^2-1=12k(3k+1)\vdots (12.2)$ hay $p^2-1\vdots 24$

Nếu $k$ chẵn thì $12k\vdots 24\Rightarrow p^2-1=12k(3k+1)\vdots 24$

TH2: $p=6k+5$

$p^2-1=(6k+5)^2-1=(6k+4)(6k+6)=12(3k+2)(k+1)$
Nếu $k$ chẵn thì $3k+2$ chẵn

$\Rightarrow 12(3k+2)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$

Nếu $k$ lẻ thì $k+1$ chẵn

$\Rightarrow 12(k+1)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Vậy $p^2-1\vdots 24$

26 tháng 11 2015

Theo bài ra ta có :

p là SNT lớn hơn 3 (1)

2p + 1 là SNT (2)

Vì p là SNT lớn hơn 3 (theo (1) ) nên p có 2 dạng : 3k+1 hoặc 3k+2 ( k là STN )

* Nếu p = 3k+1 thì :

2p+1 = 2(3k+1)+1=6k+3=3(2k+1) chia hết cho 3 hay 2p+1 chia hết cho 3 (3)

Mà p>3 => 2p+1>3 (4)

Từ (3) và (4) => 2p+1 là hợp số ( trái với (2) , loại )

Vậy p=3k+2

=> 4p+1=4(3k+2)+1=12k+9 = 3(4k+3) chia hết cho 3  hay 4p+1 chia hết cho 3 (5)

Mà p>3 => 4p+1>3 (6)

Từ (5) và (6) => 4p+1 là hợp số 

=> đpcm

27 tháng 12 2015

Do p>3 nên p có dạng 3k+1 hoặc 3k+2

Nếu p=3k+1=> 2p+1=2(3k+1)+1=6k+2+1=6k+3=3(2k+1) chia hết cho 3 (loại)

Vậy p=3k+2

=> 4p+1=4(3k+2)+1=12k+8+1=12k+9=3(4k+3) chia hết cho 3

Vậy 4p+1 là hợp số

19 tháng 10 2016

a,p=2.

b,p=0,2,4.

c,ban tự lm

k mik nhe